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ABSTRACT. In this paper, using nonsmooth analysis, we established equiv-
alence results between a locally Lipschitz vector optimization problem and
its associated approximated problem under the proper efficiency.
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1. Introduction and preliminaries

Multiobjective optimization problems consist of conflicting objective functions
and constraint sets and are to optimize the objective functions over the constraint
sets under some concepts of solution, for example, properly efficient solutions,
efficient solutions and weakly efficient solutions. Many authors have studied
sufficient and necessary optimality conditions, alternative theorems, multipliers
rules, duality results, and etc.([6]-[16], [20]).

Counsiderable attention has been given recently to devising new methods which
solve the original multiobjective mathematical programming problem and its
dual by the help of some associated vector optimization problem. One of a
such method is that proposed by Antczak [1]. He introduced a new approach
with a modified objective function for solving a differentiable multiobjective
optimization problems involved invex functions.

Recently, Antczak [2] considered n-approximated problem associated with a
primal differentiable scalar optimization problem and established equivalence be-
tween the primal problem and its associated n-approximated optimization prob-
lem under invexity assumptions. Some authors [3, 14, 17] extended the results
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of Antczak [2] to scalar nonlinear optimization problems under invexity assump-
tions and vector nonlinear optimization problems. In particular, Antczak [3] gave
an equivalence result between the differentiable vector optimization problem and
the n-approximated vector optimization problem under the (weak) efficiency.

However the 7-approximated problem in [2, 3] is a nonlinear and nonconvex
optimization problem. From approaches of Antczak [2], it is clear that we can
consider an approximated problem associated with a primal problem which is a
convex optimization problem.

Makeld and Neittaanmdaki [18] defined approximations of the locally Lipschitz
function, which are expressed in terms of generalized Clarke directional deriva-
tives [5] and considered approximated problems for locally Lipschitz optimization
problems, and showed that such approximated problems provided strong tools
for the original locally Lipschitz optimization problems. Their approximation
is more efficient and more applicable to many optimization problems than the
method of Antczak [2, 3.

Very recently, Kim {15] considered a differentiable vector optimization prob-
lem, and establish equivalence results between the problem and its associated
approximated problem under the proper efficiency.

In this paper, applying the approximation method of Mikeld and Neittaanmaki
[18] to a locally Lipschitz vector optimization problem, we obtain equivalence
results between the original problem and the approximated problem under the
proper efficiency. Qur equivalence results can be regarded as extensions of ones
in [15].

Now we give notations and preliminary results that will be used later.

We consider the following vector optimization problem:

(VP) Minimize  (fi(z), -+, fp(z))
subject to  g;(z) <0, j=1,---,m,
where f; :R® - R, i =1,---,pand g; : R* > R, j = 1,---,m are locally
Lipschitz functions. Further let, S := {x €ER™ | gij(z) <0, j=1,--- ,m}.

Optimization of (VP) is of finding an efficient solution defined as follows:

Definition 1. (1) A point Z € S is said to be an efficient solution of (VP) if there
exist no other feasible point z € S such that fi(z) < fi(Z), foralli=1,---,p,
but f;(z) < f;(Z) for some j # .

(2) [8] A point € S is called a properly efficient solution of (VP) if it is
efficient for (VP) and if there exists a scalar M > 0 such that for each i =

1,---,p, we have
fi(@) — fi(z)
fi@) = f;(Z)
for some j # ¢ such that f;(z) > f;(Z) whenever x € S and fi(z) < fi(Z).
We denote the set of all properly efficient solutions of (VP) by PrEff(VP).

<M
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The following basic definitions can be found in [19].

Definition 2. The subgradient of a convex function f : R” —» R at z € R" is
the set

of(@) = {¢ € R™ | f(y) > f(x) +¢T(y ) forall yeR"}.

Definition 3. (1) A function f: R"™ — R is locally Lipschitz at € R™ if there
exist K > 0 and § > 0 such that for any y, z € Bs(z),
|fy) = f(2)] < Klly - 2|,
where Bs(z) = {z € R" | |}z — z]| < é}.
(2) Let f : R™ — R be locally Lipschitz at z € R™. The generalized directional
derivative of f at x in the direction of v € R is defined by

fO(z;v) :==limsup MJ}“——M
ytTOx

The Clarke generalized subgradient of a locally Lipschitz function f at x is
denoted by

9 f(x) = {g eR™ | fo(z;0) > 70 forallv e R”}.

It is well known [5] that
(i) 0°f(x) is a nonempty, convex, compact set,
(i) the function v — f°(zx;v) is sublinear.

The following definitions can be found in [18].

Definition 4. Suppose that the function f : R® — R is locally Lipschitz at
z € R™ and let £ € 3f(x) be an arbitrary subgradient. Then the ¢-linearization
of f at z is defined as the function f ¢ - R — R defined by

fe) = f@)+ €T (y—2) forally eR"

and the linearization (approximation) of f at z is the function fw : R™ — R such
that

]/";(y) = max {7§(y) | €€ E)f(a:)} for all y € R™.
We can check that
(i) fz(z) = f(z) for any = € R",

(il) fo(y) = f(2) + fo(w;y — ) for all y € R,
(iil) fr is convex.

Definition 5. Let g : R® — R be locally Lipschitz function at z € R™.
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(1) g is called pseudo-convex at z if for any y € R™,

9°(z;y —x) >0 implies g(y) > g(z).
Equivalently, for any y € R™ and for any £ € 9%(x), g(y) < g¢(x) implies

<€7 Y- .’E> <0.
(2) g is called quasi-convex at x if for any y € R",

9(y) < g(z) implies ¢°(z;y —z) <O0.
Equivalently, for any y € R™ and for any & € 8°g(z), (£,y —z) > 0 implies
9(y) > g(x).

2. Equivalence results

In this section, we show that the equivalence between a solution of a locally
Lipschitz vector optimization problem and a solution of its approximated prob-
lem defined below.

Let z¢ be a feasible solution in (VP) and assume that f;, ¢ = 1,---,p and
g5, 3 =1,--- ,mare locally Lipschitz at 9. With the (VP) we also consider the
following approximated problem (VP ) given by

(VPz)  Minimize  (fu(mo) + ff(moiz = 20), -+, fylwo) + f; (wos o — 7o)
SUbjeCt to gj(:ro)+g§?(x0;x—xo) S Oa .] = 17 , L.
Theorem 1. Let zg € PrEff(VP) and suppose that the constraint qualification
satisfies at xg, i.e., 0 & co{acgj(a:g) | j€ I(a:o)}, where I(zo) = {j | g;(z0) =
0}. Then there exist A\; >0, i=1,---,p, u; >0, j=1,---,m such that
Y4 m m
0€d N0 filwo) + Y 1;0°g;(w0), Y 1595(m0) =0.

i=1 j=1 j=1

Proof. Let o € PrEff(VP). By Theorem 3.1 in [11}, there exist v > 0 such
that z¢ is a solution of the following optimization problem:

Minimize Z file) +ymax{fi(z) — fi(zo), - , folx) — Folw0), 0}

subject to z € S.

So under the constraint qualification, using the optimality theorem, we can check
that there exist p; >0, 5 =1,---,m such that

0€ D" filmo) +veo| | 8 filwo) U {0}] + D 10°9;(w0),

i=1 i=1 j=1

Z/ngj (zo) =0,
j=1
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where coA is the convex hull of the set A. Therefore, there exist A\; > 0, 1 =
1,--+,p,4; 20, j=1,---,m such that

P m
0€d N filwo) + D 1895 (o),

i=1 j=1

Zﬂjgj (ro) = 0.

The following is the definition of a KKT point of (VP):

Definition 6. xg is said to be a KKT point of (VP) if g;(z¢) <0, j=1,---,m
and there exist A\; >0, i=1,---,p, p; >0, j=1,---,m such that

0e Z )\iacfi(ﬂfo) + Zujacgj(wo), (1)

i=1 j=1

m
> uig;(wo) =0.
j=1

Theorem 2. If zo is a KK T point of (VP), then zo € PrEff(VPL).

Proof. Let o be a KKT point of (VP). Then g;(z¢) <0, j =1,--- ,m and there
exist \; >0, i=1,---,p, yu; >0, j=1,---,m, & € fi(xo), §; € 0°g;(xo)

such that
P m m
S &+ p€; =0 and > 1ig5(x0) = 0.
i=1 j=1 j=1
Hence

YNk —zo) + Y &y (@ —20) =0
=1 j=1

for any * € R™ and Z,ujgj (zg) = 0. Then

=1

Z)\ max &z — zo) +Zuj_ max E;(I—Io)zo
i=1

£:€9¢ fi(zo) = &eo0 gj(zo)

m
for any x € R™ and Zujgj(:n()) = 0. By Proposition 2.1.2 in {5],
Jj=1

P m
Z A fY (s — o) + Z/ng;(xo; x—1x0) >0
=1 j=1
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for any z € R™ and Zujgj(:co) =0. Ifgj(x0)+g;-’(x0;x—xo) <0,j=1,---,m,
j=1
then

m m
> 1i95(o) + Y 1398 (x0T — x0) < 0
i=1 i=1

P
and hence Z Aifi(xo;x — o) > 0, i.e.,

=1
p p
> iff(mosz — zo) > D i f? (@o; To — o).
i=1 i=1
Hence z is a solution of the following scalar optimization problem:
P
Minimize Z i fL (xos ¢ — z0)
i=1
subject to gi(zo) + g5 (xo; 2 —x0) <0, j=1,--- ,m.

So zg is a solution of the following scalar optimization problem:
P P
Minimize Z Aifi(zo) + Z XS (xo; x — zo)
i=1 i=1

SubjeCt to gj($0)+g;($0,37—$0) S07 .]: 17"' y M.
Therefore, by Theorem 1 in [8], zo € PrEff(VPyp).

Theorem 3. Let o € PrEff(VPr) and suppose that the constraint qualifica-
tion satisfies at xq, i.e., 0 & co{f)cgj(:co) |j€e I(xo)}. Then zo is a KKT point
of (VP).

Proof. Let xo € PrEff(VPy). Note that f;(zo) + f2(zo;x — z0), i =1,-+-,p
and g;(zo) + g%(xo; * — o), j = 1,--- ,m are convex functions with respect to

z. Thus by Theorem 2 in [8], there exist A; >0, i = 1,-- -, p, such that xg is an
optimal solution of the following optimization problem:

p
Minimize Z i (fi(zo) + £2 (03 — 20))

=1
subject to  g;(zo) + g3(z0; T — o) <0, j=1,--+,m.

From the optimality theorem for a scalar optimization problem, there exist A; >
0,i=1,---,p, 4; >0, 5=1,---,m such that

p m m
06 Ndfilzo) + Y 1;0°(wo), Y Hygs(wo) =0,
i=1 j=1

j=1
Moreover, since zg is a feasible solution of (VP), g;(zo) <0, 5 =1,---,m.
Therefore zg is a KKT point of (VP).
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Theorem 4. Let xg € PrEff(VPr) and suppose that the constmint qualifica-

tion satisfies at xy, t.e., 0 ¢ co{@cg](ato) | 7 € I{zg } If Z)\ fi ts pseudo-

conver at Tg and Z“jgj is quasi-convex at o, then xg € PrEff(VP).
=1
Proof. 1f o € PrEff(VP;) and suppose that the constraint qualification sat-
m
isfies at 9. Then by Theorem 3, zo is a KKT point of (VP), Z/,ngj<x0) =0.
j=1

m
Also, for any z € S, Zujgj(m) < 0. Therefore,
j=1

m m
Zﬂjgj Z:u’jgj 1'0
j=1 j=1

m m
By the quasi-convexity of Z,ujgj(xo ) Zu] 5], $0> < 0 for any Zj €
j=1 j=1

P
0°g;(zo). From (1), we obtain Z)‘i (&, — zg) > 0 for some & € 0°fi(xo).

=1

Thus, by the pseudo-convexity of Z Aifis
i=1

Do Aifi@) = Nifilzo)
=1 =1

for all z € S. Thus z, is optimal solution of the following scalar optimization
problem:

14
Minimize > Aifilx)

subject to gi{x) <0, j=1,---,m
Therefore, by Theorem 1 in [8], zg € PrEff(VP).
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