• Title/Summary/Keyword: Nonlinear functional differential equation

Search Result 44, Processing Time 0.027 seconds

Nonlinear vibration analysis of the viscoelastic composite nanoplate with three directionally imperfect porous FG core

  • Mohammadia, M.;Rastgoo, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.131-143
    • /
    • 2019
  • In this study, the nonlinear vibration analysis of the composite nanoplate is studied. The composite nanoplate is fabricated by the functional graded (FG) core and lipid face sheets. The material properties in the FG core vary in three directions. The Kelvin-Voigt model is used to study the viscoelastic effect of the lipid layers. By using the Von-Karman assumptions, the nonlinear differential equation of the vibration analysis of the composite nanoplate is obtained. The foundation of the system is modeled by the nonlinear Pasternak foundation. The Bubnov-Galerkin method and the multiple scale method are used to solve the nonlinear differential equation of the composite nanoplate. The free and force vibration analysis of the composite nanoplate are studied. A comparison between the presented results and the reported results is done and good achievement is obtained. The reported results are verified by the results which are obtained by the Runge-Kutta method. The effects of different parameters on the nonlinear vibration frequencies, the primary, the super harmonic and subharmonic resonance cases are investigated. This work will be useful to design the nanosensors with high biocompatibility.

EXISTENCE AND REGULARITY FOR SEMILINEAR NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Jeong, Jin-Mun
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.631-637
    • /
    • 2014
  • In this paper, we construct some results on the existence and regularity for solutions of neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the existence and regularity for solutions of the neutral system by using fractional power of operators and the local Lipschtiz continuity of nonlinear term without using many of the strong restrictions considering in the previous literature.

APPROXIMATE CONTROLLABILITY FOR SEMILINEAR INTEGRO-DIFFERENTIAL CONTROL EQUATIONS WITH QUASI-HOMOGENEOUS PROPERTIES

  • Kim, Daewook;Jeong, Jin-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.189-207
    • /
    • 2021
  • In this paper, we consider the approximate controllability for a class of semilinear integro-differential functional control equations in which nonlinear terms of given equations satisfy quasi-homogeneous properties. The main method used is to make use of the surjective theorems that is similar to Fredholm alternative in the nonlinear case under restrictive assumptions. The sufficient conditions for the approximate controllability is obtain which is different from previous results on the system operator, controller and nonlinear terms. Finally, a simple example to which our main result can be applied is given.

REGULARITY FOR FRACTIONAL ORDER RETARDED NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Cho, Seong Ho;Jeong, Jin-Mun;Kang, Yong Han
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1019-1036
    • /
    • 2016
  • In this paper, we study the existence of solutions and $L^2$-regularity for fractional order retarded neutral functional differential equations in Hilbert spaces. We no longer require the compactness of structural operators to prove the existence of continuous solutions of the non-linear differential system, but instead we investigate the relation between the regularity of solutions of fractional order retarded neutral functional differential systems with unbounded principal operators and that of its corresponding linear system excluded by the nonlinear term. Finally, we give a simple example to which our main result can be applied.

ANALYSIS OF HILFER FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Saif Aldeen M. Jameel;Saja Abdul Rahman;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.259-273
    • /
    • 2024
  • In this manuscript, we study the sufficient conditions for existence and uniqueness results of solutions of impulsive Hilfer fractional Volterra-Fredholm integro-differential equations with integral boundary conditions. Fractional calculus and Banach contraction theorem used to prove the uniqueness of results. Moreover, we also establish Hyers-Ulam stability for this problem. An example is also presented at the end.

EXISTENCE OF SOLUTION OF DIFFERENTIAL EQUATION VIA FIXED POINT IN COMPLEX VALUED b-METRIC SPACES

  • Mebawondu, A.A.;Abass, H.A.;Aibinu, M.O.;Narain, O.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.303-322
    • /
    • 2021
  • The concepts of new classes of mappings are introduced in the spaces which are more general space than the usual metric spaces. The existence and uniqueness of common fixed points and fixed point results are established in the setting of complete complex valued b-metric spaces. An illustration is given by establishing the existence of solution of periodic differential equations in the framework of a complete complex valued b-metric spaces.

A STUDY OF A WEAK SOLUTION OF A DIFFUSION PROBLEM FOR A TEMPORAL FRACTIONAL DIFFERENTIAL EQUATION

  • Anakira, Nidal;Chebana, Zinouba;Oussaeif, Taki-Eddine;Batiha, Iqbal M.;Ouannas, Adel
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.679-689
    • /
    • 2022
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.

ON A TYPE OF DIFFERENTIAL CALCULUS IN THE FRAME OF GENERALIZED HILFER INTEGRO-DIFFERENTIAL EQUATION

  • Mohammed N. Alkord;Sadikali L. Shaikh;Mohammed B. M. Altalla
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.83-98
    • /
    • 2024
  • In this paper, we investigate the existence and uniqueness of solutions to a new class of integro-differential equation boundary value problems (BVPs) with ㄒ-Hilfer operator. Our problem is converted into an equivalent fixed-point problem by introducing an operator whose fixed points coincide with the solutions to the given problem. Using Banach's and Schauder's fixed point techniques, the uniqueness and existence result for the given problem are demonstrated. The stability results for solutions of the given problem are also discussed. In the end. One example is provided to demonstrate the obtained results

SOLUTIONS OF A CLASS OF COUPLED SYSTEMS OF FUZZY DELAY DIFFERENTIAL EQUATIONS

  • Wu, Yu-ting;Lan, Heng-you;Zhang, Fan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.513-530
    • /
    • 2021
  • The purpose of this paper is to introduce and study a class of coupled systems of fuzzy delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define solutions of the coupled systems as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the problems. Furthermore, we prove existence and uniqueness of solution for the considered systems, and then a solution algorithm is proposed. Finally, we present an example to illustrate our main results and give some work that can be done later.