DOI QR코드

DOI QR Code

REGULARITY FOR FRACTIONAL ORDER RETARDED NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Cho, Seong Ho (Department of Applied Mathematics Pukyong National University) ;
  • Jeong, Jin-Mun (Department of Applied Mathematics Pukyong National University) ;
  • Kang, Yong Han (Institute of Liberal Education Catholic University of Daegu)
  • Received : 2015.06.15
  • Published : 2016.09.01

Abstract

In this paper, we study the existence of solutions and $L^2$-regularity for fractional order retarded neutral functional differential equations in Hilbert spaces. We no longer require the compactness of structural operators to prove the existence of continuous solutions of the non-linear differential system, but instead we investigate the relation between the regularity of solutions of fractional order retarded neutral functional differential systems with unbounded principal operators and that of its corresponding linear system excluded by the nonlinear term. Finally, we give a simple example to which our main result can be applied.

Keywords

Acknowledgement

Supported by : National Foundation of Korea(NRF)

References

  1. J. P. Aubin, Un theoreme de compacite, C. R. Acad. Sci. 256 (1963), 5042-5044.
  2. B. Baeumer, S. Kurita, and M. M. Meerschaert, Inhomogeneous fractional diffusion equations, Fract. Calc. Appl. Anal. 8 (2005), no. 4, 371-386.
  3. G. Di Blasio, K. Kunisch, and E. Sinestrari, $L^2$-regularity for parabolic partial integrod-ifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), no. 1, 38-57. https://doi.org/10.1016/0022-247X(84)90200-2
  4. X. Fu, Controllability of neutral functional differential systems in abstract space, Appl. Math. Comput. 141 (2003), no. 2-3, 281-296. https://doi.org/10.1016/S0096-3003(02)00253-9
  5. L. Gaul, P. Klein, and S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process. 5 (1991), 81-88. https://doi.org/10.1016/0888-3270(91)90016-X
  6. W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53. https://doi.org/10.1016/S0006-3495(95)80157-8
  7. E. Hernandez and M. Mckibben, On state-dependent delay partial neutral functional differential equations, Appl. Math. Comput. 186 (2007), no. 1, 294-301. https://doi.org/10.1016/j.amc.2006.07.103
  8. E. Hernandez, M. Mckibben, and H. Henrrquez, Existence results for partial neutral functional differential equations with state-dependent delay, Math. Comput. Modelling 49 (2009), no. 5-6, 1260-1267. https://doi.org/10.1016/j.mcm.2008.07.011
  9. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  10. O. K. Jaradat, A. Al-Omari, and S. Momani, Existence of the mild solution for fractional semilinear initial value problems, Nonlinear Anal. 69 (2008), no. 9, 3153-3159. https://doi.org/10.1016/j.na.2007.09.008
  11. J. M. Jeong, Stabilizability of retarded functional differential equation in Hilbert space, Osaka J. Math. 28 (1991), no. 2, 347-365.
  12. J. M. Jeong and H. G. Kim, Controllability for semilinear functional integrodifferential equations, Bull. Korean Math. Soc. 46 (2009), no. 3, 463-475. https://doi.org/10.4134/BKMS.2009.46.3.463
  13. J. M. Jeong, Y. C. Kwun, and J. Y. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dynam. Control Systems 5 (1999), no. 3, 329-346. https://doi.org/10.1023/A:1021714500075
  14. A. A. Kilbas, H. M. Srivastava, and J. Juan Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V, Amsterdam, 2006.
  15. M. A. Krannoselski, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, New York, 1964.
  16. V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
  17. F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics (Udine, 1996), 291-348, CISM Courses and Lectures, 378, Springer, Vienna, 1997.
  18. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  19. M.Muslim, Existence and approximation of solutions to fractional differential equations, Math. Comput. Modelling 49 (2009), no. 5-6, 1164-1172. https://doi.org/10.1016/j.mcm.2008.07.013
  20. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  21. N. Sukavanam and S. Kumar, Approximate controllability of fractional order semilinear delay systems, J. Optim. Theory Appl. 151 (2011), no. 2, 373-384. https://doi.org/10.1007/s10957-011-9905-4
  22. N. Sukavanam and N. K. Tomar, Approximate controllability of semilinear delay control system, Nonlinear Funct. Anal. Appl. 12 (2007), no. 1, 53-59.
  23. H. Tanabe, Equations of Evolution, Pitman-London, 1979.
  24. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978.
  25. L. Wang, Approximate controllability for integrodifferential equations and multiple delays, J. Optim. Theory Appl. 143 (2009), no. 1, 185-206. https://doi.org/10.1007/s10957-009-9545-0
  26. Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59 (2010), no. 3, 1063-1077. https://doi.org/10.1016/j.camwa.2009.06.026