• Title/Summary/Keyword: Nonlinear PID Controller

Search Result 244, Processing Time 0.035 seconds

Performance Analysis for Quadrotor Attitude Control by Super Twisting Algorithm (쿼드로터 자세제어를 위한 슈퍼 트위스팅 알고리즘의 성능 분석)

  • Jang, Seok-ho;Yang, You-young;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.373-381
    • /
    • 2020
  • Quadrotor is simple to model because of the symmetric structure but it has the disadvantage of being relatively sensitive to the external disturbance and system uncertainty. The PID technique applied for the attitude control of quadrotor has been applied comprehensively, but it has a disadvantage that is hard to precise control in the nonlinear system. In this work, a quadrotor attitude control law using the super twisting algorithm is studied, which has robust characteristics against disturbance and system uncertainty. To evaluate the attitude performance by the proposed technique, simulation studies and actual flight tests are carried out, and compared with the conventional PID controller.

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

Design of a hybrid fuzzy controller with the optimal auto-tuning method (최적 자동동조 방법에 의한 하이브리드 퍼지제어기의 설계)

  • Oh, Sung-Kwun;Ahn, Tae-Chon;Hwang, Hyung-Soo;Park, Jong-Jin;U, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • 퍼지논리제어기는 산업응용에 광범위하게 연구되고 있으며, 계속적으로 사용되고 있다. 그러나 퍼지집합의 조정을 통해 최적규칙을 구축하기 위하여, 시행착오에 의한 매우 능숙한 기술이 요구된다. 이 논문에서는 첫째로, 퍼지논리제어기와 기존의 PID 제어기로 구성된 하이브리드 퍼지제어기를 제안한다. 즉, 시스템의 제어 입력은 퍼지변수로서, 과도상태에서의 FLC출력과 정상상태에서의 PID 출력의 컨벡스(convex) 결합이다. 둘째로, 간략추론법과 개선된 컴플렉스방법을 이용한 강력한 자동동조알고리즘이 퍼지논리제어기의 성능을 자동적으로 개선하기 위하여 사용된다. 이방법은 오차변화율및 제어출력의 제한조건에 의하여, 언어제어규칙, 퍼지계수(scaling factor), PID계수, 하이브리드 퍼지논리제어기의 하중계수의 최적값을 자동적으로 추정한다. 시뮬레이션은 시간지연 플랜트및 하수처리시스템의 활성오니공정과 같은 비선형 플랜트에서 실행되고, 시스템의 성능은 평가지수 ITAE로 평가된다.

  • PDF

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

$H^{\inf}$ controller design for submerged vehicle under model uncertainty and sea wave disturbances (모델 불확실성과 해파외란을 고려한 고려한 몰수체의 $H^{\inf}$ 제어기 설계)

  • 이재명;류동기;이갑래;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.17-26
    • /
    • 1996
  • A submerged vehicle which is a nonlinear multivariable system must be designed to be roubst against inner-outer perturbations and hydrodynamic disturbances induces maneuvering operation. But a practical design of motion controller is limited by both mathematical modeling error and linearization errors. Performance of a motion controller based on traditional design method is very poor when the vehicle motion is under wave force distrubacnes near sea surface. Therefore, this ppaer proposes a design method of $^{\infty}$ controller under model uncertainty and sea wave disturbances. performance of the controllers by both computer simulation and HILS (hardwave in the loop simulation) shows that $H^{\infty}$ controller is more robust than PID controller under model uncertainty and high sea state...

  • PDF

Immune Algorithm Based Active PID Control for Structure Systems

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1823-1833
    • /
    • 2006
  • An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I-PID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect.

System Identification of the Hammerstein Processes for Automatic Tuning of PID Controller Using Relay Feedback

  • Koo, Doe-Gyoon;Youn, Jung-Hoon;Lee, Jie-Tae;Sung, Su-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.124.3-124
    • /
    • 2001
  • The nonlinearity of several chemical processes is usually approximated by a series of the nonlinear static element and the linear subsystem. In the case of the model that the nonlinear static element precedes the linear subsystem, it is called a Hammerstein model. It is a Wiener model when the order is reserved. Here we investigate a relay feedback identification method for Hammerstein type nonlinear processes. The proposed method separates the identification of the nonlinear static function from that of the linear subsystem by using a relay feedback method. From two times activation of nonlinear processes, we identify he whole range of the nonlinear static function as well as the ultimate information of the linear subsystem.

  • PDF

A Learning Controller for Gate Control of Biped Walking Robot using Fourier Series Approximation

  • Lim, Dong-cheol;Kuc, Tae-yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.85.4-85
    • /
    • 2001
  • A learning controller is presented for repetitive walking motion of biped robot. The learning control scheme learns the approximate inverse dynamics input of biped walking robot and uses the learned input pattern to generate an input profile of different walking motion from that learnt. In the learning controller, the PID feedback controller takes part in stabilizing the transient response of robot dynamics while the feedforward learning controller plays a role in computing the desired actuator torques for feedforward nonlinear dynamics compensation in steady state. It is shown that all the error signals in the learning control system are bounded and the robot motion trajectory converges to the desired one asymptotically. The proposed learning control scheme is ...

  • PDF

A Theoretical Analysis of Fuzzy Logic Controller (퍼지논리 제어기의 이론적 해석)

  • Lee, Chul-Heui;Seo, Seon-Hak;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1024-1026
    • /
    • 1996
  • Sources of nonlinearity In a fuzzy logic controller Include the fuzzification, the fuzzy reasoning and the defuzzification. In this paper, a closed form expression for the defuzzified output is derived in case of a fuzzy logic controller with two Inputs, triangular memberships, MacVicar-Whelan type linguistic rules, and direct fuzzy reasoning. As a result, it is shown that fuzzy logic controller is a nonlinear controller. Also its nonlinearity Is analyzed with respect to the conventional PID control and the sliding mode control.

  • PDF

A Study on the Stabilization Control of Nonlinear Systems using RVEGA SMC (RVEGA SMC를 이용한 비선형 시스템의 안정화 제어)

  • Kim, Tae-Woo;Jo, Hyun-Woo;Song, Ho-Shin;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2624-2626
    • /
    • 2000
  • The stabilization controls of coupled tank system and ball-beam system are difficult control tasks because of their high order time delay, nonlinearity and structural unstability. Fuhermore, a series of classical methods such as a conventional PID and a full state feedback controller(FSFC) based on the local linearizations have narrow stabilizable regions. Therefore, in this paper, in order to stabilize two representative nonlinear system mentioned above, a Sliding Mode Controller based on a Real Variable Elitist Genetic Algorithm(RVEGA SMC) was proposed.

  • PDF