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a b s t r a c t

Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require
approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of
these algorithms. The response quality of these algorithms depends on the objective function and its
regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dy-
namics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because
of fission products properties. The proportionaleintegralederivative (PID) controller is intended to
control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square
error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective
functions have been used as performance indexes to tune the PID gains with PSO. The optimization
results with each of them are evaluated with the number of function evaluations (NFE). All performance
indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the
cost function, in the desired time domain.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A performance index has an important role in the performance
and speed of the metaheuristic algorithms. One of these algorithms
is particle swarm optimization (PSO). This algorithm has shown its
optimizing performance inmany problems, especially those that do
not have a clear analytical solution or are difficult to solve. The
nuclear reactor dynamics is nonlinear such as a pressurized water
reactor (PWR), which can be solved analytically by linearizing the
state-space equations. One of the most effective controllers for this
reactor type is proportionaleintegralederivative (PID), and one of
the methods for tuning its gains is PSO. This algorithm has been
used frequently in various nuclear industry issues. Câmara Augusto
et al. [1] used PSO for a nuclear reactor reload issue. In their work, a
new method was proposed to communicate between particles in
PSO. Wang et al. [2] were used PSO to optimize the parameter of an
AP1000 reactor. In PSO, the control parameter as an objective
function was directly incorporated in the simulation results. PSO
was used for a power ascension path of a boiling water reactor [3].
In their work, the control rod movement was searched as an
objective function. The fuel loading pattern of a swimming pool
ousakazemi@gmail.com.

by Elsevier Korea LLC. This is an
type material test reactor was optimized with PSO as maximizing
the effective multiplication factor constrained to decrease the po-
wer peaking factor [4]. Wang et al. [5] used a hybrid fault diagnosis
methodology with PSO for the safety and public health of a nuclear
power plant (NPP). Recently, PSO has been used for molten salt
breeder reactor power control with internal model control PID [6].

In a PWR nuclear reactor, axial xenon oscillation leads to axial
offset (AO) power-distribution. Therefore, it is better to use a multi-
point kinetics model. These models also have better accuracy than
the point-kinetics model. In this work, the conventional two-point
kinetics reactor model of a typical PWR is used. The power level of
this model is controlled with two PSO-tuned PID controller. PSO as
a metaheuristic algorithm and its optimizing case (PIDs) depend on
the defined objective function as the performance index. Common
integrals of the error function are used to tune the PID gains, i.e.
integral of the absolute error (IAE), integral of square error (ISE),
integral of time-absolute error (ITAE), and integral of time-square
error (ITSE). The central processing unit (CPU) time criterion is
commonly used to compare two algorithms. Recently, Mousaka-
zemi [7] has been proposed the number of function evaluations
(NFE) instead of the CPU time method. These performance indexes
are compared based on the NFE and quality of the closed-loop PID
controlling system.
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Nomenclature

n neutron density, cm�3

n0 initial neutron density in an equilibrium state, cm�3

nr neutron density relative to initial density, n= n0
c precursor densitycm�3

c0 initial precursor density in an equilibrium statecm�3

cr precursor density relative to initial density, c= c0
w11 coupling coefficient of node 1 to itself
w12 coupling coefficient between nodes 1 and 2
w22 coupling coefficient of node 2 to itself
w21 coupling coefficient between nodes 2 and 1
D diffusion coefficient, cm
v thermal neutron speed, cm=s
DH axial height of each core half, cm
d axial distance between the two nodes center, cm
nð0Þ steady-state value of neutron density at initial rated

power, cm�3

Xe xenon density, cm�3

Xe0 initial value of j-th node xenon density, cm�3

I Iodine density of node j, cm�3

Tf average temperature of the fuel, �C
T0 initial value of fuel temperature, �C
Tc average temperature of coolant (Tc ¼ ðTe þTlÞ= 2), �C
T0c initial value of coolant temperature, �C
Te inlet temperature of the coolant, �C
Tl outlet temperature of the coolant, �C
r total reactivity, dK=K
drr induced reactivity due to control rod movement, dK=

K
Zr control rod speed, fraction of corelength=s
Gr total reactivity of control rod, dK=K

bi i-th group effective delayed neutron fraction

b effective delayed-neutron fraction, b ¼ P3
i¼1

bi

l generation time of neutron, s
li decay constant of i-th delayed-neutron group, s�1

gXe xenon yield per fission
lXe decay constant of xenon, s�1

gI Iodine yield per fission
lI decay constant of Iodine, s�1

Sf macroscopic fission cross-section of the thermal

neutron, cm�1

sXe microscopic thermal neutron absorption cross-
section of xenon, cm2

G useful thermal energy liberated per fission of 235U,
MW$s

V volume of each core half, cm3

ff fraction of deposited power in fuel
mf total heat capacity of fuel, MW=�C
mc total heat capacity of coolant, MW$s=�C
M mass flow rate time heat capacity of water, MW=�C
U coefficient of heat transfer between fuel and

coolant MW=�C
af fuel temperature coefficient, ðdK =KÞ=�C
ac coolant temperature coefficient, ðdK =KÞ=�C
P0 rated power, MW
j node number¼ 1;2
KP proportional gain, 2R

KI integral gain, 2R

KD derivative gain, 2R

uðtÞ ¼ Zr
eðtÞ tracking error between output and set-point
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2. Materials and methods

2.1. Reactor model

The 16th order model is used in this paper. The two-point ki-
netics reactor model is considered in the neutronic equations,
based on the three groups of the delayed-neutron precursors. In
this paper, the core is axially divided into two halves (nodes),
respectively, for the lower and upper half. Also, each node is
affected by the other because of neutron diffusion [8,9].

8>>>><
>>>>:

dnr1
dt

¼ r1 � b

l1
nr1 þ

X3
i¼1

bi
l1
cr1;i �w11nr1 þw12nr2

dCr1;i
dt

¼ linr1 � licr1;i ði ¼ 1;2;3Þ

(1)

8>>>><
>>>>:

dnr2
dt

¼ r2 � b

l2
nr2 þ

X3
i¼1

bi
l2
cr2;i �w22nr2 þw21nr1

dCr2;i
dt

¼ linr2 � licr2;i ði ¼ 1;2;3Þ

(2)

w11 ¼
D1v

DH1d21
; w12 ¼ D1v

DH1d21

n2ð0Þ
n1ð0Þ

; w22 ¼ D2v

DH2d12
;

w21 ¼ D2v

DH2d12

n1ð0Þ
n2ð0Þ

(3)
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The core reactivity is influenced by several factors in a PWR:
neutron poisons feedback; especially xenon, feedback of the fuel
and coolant temperatures, and injection reactivity caused by con-
trol rods movement. In this paper, fuel and coolant temperature
equations are based on the lumped model. Also, two control rod
banks are considered, which individually affect each half of the
core.

8>>>>><
>>>>>:

dXej
dt

¼
�
gXeSfj � s

Xej
a Xej

� P0
GSfjVj

nrj � lXeXej þ lI Ij

dIj
dt

¼ gISfj
P0

GSfjVj
nrj � lI Ij

(4)

dTf
dt

¼ ff P0
mf

nr � U

mf
Tf þ

U

2mf
ðTe þ TlÞ (5)

dTl
dt

¼
�
1� ff

�
P0

mc
nr þ U

mc
Tf þ

M
mc

ðTe � TlÞ �
U

2mc
ðTe þ TlÞ (6)

drrj
dt

¼GrjZrj (7)

rj ¼ drrj þaf

�
Tf � T0f

�
þacðTc � T0cÞ �

sXej
Sfj

�
Xej �Xe0j

�
(8)



Fig. 1. The target range of the normalized axial offset [10].

Fig. 3. PSO flowchart.
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2.2. Xenon oscillation and axial offset power-distribution

In a PWR, the axial xenon oscillation occurs over a long-time
operation. This leads to an AO power-distribution. Failure to do so
will result in a local power peaking issue. However, the radial po-
wer peaking factor is smoothed at the beginning of the fuel cycle
(BOC). The AO is defined with the mean power deviation of the two
core halves to the core power as Eq. (9) [10].

AO¼ P2 � P1
P2 þ P1

(9)

The AO must be bound to the desired value, at the nominal
power in the equilibrium state of the xenon and absence of the
control rods [11]. The AO criterion is assessed with its normalized
valued (Eq. (10)) in a P � DI coordinate

DI¼AO� P (10)

As shown in Fig. 1, the P � DI should be laid in the acceptable
range (in this paper, 5%) during the reactor operation.

Also, a normalized axial xenon oscillation index (AXOI) is used
to assess the core axial xenon oscillations of the core. This factor is
defined by the normalized difference of the xenon concentration
between two nodes to the total core as Eq. (11) [12].

AXOI¼Xe2 � Xe1
Xe0

(11)

2.3. Controller and optimization procedure

In this paper, the standard PID controller is considered, which is
very popular in the NPPs. PID defined as Eq. (12) [13].
Fig. 2. Optimizing method. r: desired signal (desired power as set-point); y: output
relative neutron density.
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uðtÞ¼KPeðtÞ þ KI

ðt

0

eðtÞdtþ KD
d
dt

eðtÞ (12)

where KP ;KI ;KD 2R.
The PSO script code is added to the controlling system as Fig. 2.

The PSO tunes the best gains of each PID related to each node, based
on the desired signal (desired relative power/neutron density). The
relative power of each node is set by the desired AO. The AO must
remain constant during the load-following.
Table 1
The PSO parameters.

Parameters Value

Members of each individual
�
KP1;KI1;KD1
KP2;KI2;KD2

Maximum Iteration 100
Swarm size ðNpopÞ 30
c 0:7298
u 0:7298
c1 1:49609



Table 2
Analytical results of the optimizations and simulations.

Performance index Region 1 (s) Region 2 (s) Region 3 (s) Region 4 (s)

150e250 250e750 750e850 850e1000

IAE

Euclidean norm 1.0411 � 10�4 1.2488 � 10�4 1.3868 � 10�4 0.7269 � 10�4

Over/Under-shoot 2.5675 � 10�5 8.0548 � 10�5 7.0391 � 10�5 2.7539 � 10�5

IAE 7.3616 � 10�5 8.8300 � 10�5 9.8050 � 10�5 5.1399 � 10�5

ISE 0.3894 � 10�9 2.2702 � 10�9 1.7910 � 10�9 0.3856 � 10�9

ITAE 0.012660329 0.022706374 0.075131504 0.044036373
ITSE 0.5943 � 10�7 5.6874 � 10�7 13.446 � 10�7 3.2830 � 10�7

ISE

Euclidean norm 1.0419 � 10�8 2.3329 � 10�8 2.0340 � 10�8 0.9358 � 10�8

Over/Under-shoot 2.5744 � 10�5 5.2337 � 10�5 4.9665 � 10�5 2.6842 � 10�5

IAE 3.8844 � 10�4 4.3045 � 10�4 4.5080 � 10�4 2.7085 � 10�4

ISE 3.3530 � 10�9 7.9625 � 10�9 6.8972 � 10�9 3.0125 � 10�9

ITAE 0.068680059 0.113447765 0.347650939 0.23363066
ITSE 0.5400 � 10�6 2.0388 � 10�6 5.2194 � 10�6 2.5816 � 10�6

ITAE

Euclidean norm 0.017904504 0.03205635 0.106171524 0.062336879
Over/Under-shoot 2.5729 � 10�5 19.328 � 10�5 4.9195 � 10�5 7.2495 � 10�5

IAE 7.3617 � 10�5 8.8321 � 10�5 9.7948 � 10�5 5.1460 � 10�5

ISE 0.3901 � 10�9 7.0792 � 10�9 1.2784 � 10�9 0.8366 � 10�9

ITAE 0.012660393 0.022667263 0.075074599 0.044071769
ITSE 0.5954 � 10�7 17.713 � 10�7 9.6024 � 10�7 7.1155 � 10�7

ITSE

Euclidean norm 0.8404 � 10�7 5.4964 � 10�7 13.579 � 10�7 4.2528 � 10�7

Over/Under-shoot 2.5675 � 10�5 5.3382 � 10�5 4.9194 � 10�5 2.5342 � 10�5

IAE 7.3615 � 10�5 8.8298 � 10�5 9.7959 � 10�5 5.1452 � 10�5

ISE 0.3893 � 10�9 1.5494 � 10�9 1.2783 � 10�9 0.3532 � 10�9

ITAE 0.012660253 0.022729928 0.075082996 0.044087356
ITSE 0.5942 � 10�7 3.8863 � 10�7 9.6014 � 10�7 3.0071 � 10�7
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For each region of the power phase, all PID gains generated by
the PSO algorithm are simulated in the dynamic model. The PSO
scripts call the required outputs for evaluating its objective function
at the end of the system dynamic model simulation. In the next
iteration, new PID gains are generated by PSO, if the termination
criterion of the algorithm loop is not reached.
2.4. Particle swarm optimization (PSO)

The PSO algorithm is a population-based stochastic optimiza-
tion method designed by Eberhart and Kennedy [14]. The PSO al-
gorithm is very similar to evolutionary computational techniques
such as GA. The system starts by collecting random solutions and
searching for optimization along with generation updates. Unlike
Fig. 4. Relative neutron density with tuned and not-tuned PID controllers.
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GA, the PSO algorithm has no evolutionary operator such as
crossover and mutation.
2.4.1. Algorithm
The PSO algorithm starts with a group of random particles (the

solution) and then searches for generations. In the first iterations,
the agents are generated uniformly randomly, which are mapped to
the desired real number gains for better system controllability
based on the system-related experts (in this work, 0<KP <100,
0<KI <100, 0<KD <10), in the structure of the objective function.
The value of each particle is measured with a cost function as a
performance index. Each particle is updatedwith two best values in
each iteration. The first is the best solution (fitness function) that
has ever been achieved (the proportion value is also stored). This is
called the “pBest” value. Another best cost is the value so far earned
by individuals in the population. This is the best global value that is
called “gBest”. After finding the best values of the pBest and the
gBest, the particle updates its velocity and position with Eqs. (13)
and (14) in one-dimensional space. In this work, the velocity
reflection method is used when the particle exceeds the border of
the search space.

vtþ1
i ¼uvti þ c1a�

�
xti;pBest � xti

�
þ c2b�

�
xtgBest � xti

�
(13)

xtþ1
i ¼ xti þ vtþ1

i

�
i¼1;2;…;Npop

�
(14)

where Npop: number of particle swarm; t: generation indices; xi: a
position of the i-th particle; xti;pBest: the best personal position of the

i-th particle at the t-th generation; xtgBest: the best global position of

all particles up to t-th generation; vi: particle velocity of the i-th
particle; u: inertiaweight; c1; c2: acceleration coefficients (learning
factor); a; b: uniform random numbers.

Confidence factors are considered as u ¼ f; c1 ¼ cf1; c2 ¼ cf2
[15], which f and c (construction factor), are based on the Clerc's
method [16] as Eq. (15):



Fig. 5. Normalized Euclidean norm (cost) vs. the NFE at (A) region 1, (B) region 2, (C) region 3, and (D) region 4.

Fig. 6. Relative precursor density. Fig. 7. Control rod speed (control signal) of the bottom/top core.
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Fig. 8. Reactivity of the bottom/top control rod.

Fig. 9. Total reactivity of the bottom core.

Fig. 10. Total reactivity of the top core.
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8><
>:

c f1;f2 >0 : fbf1 þ f2 >4

c ¼ 2

f� 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 4f

q (15)

In this method, f1 ¼ f2 ¼ 2:05, and cz0:7298.
The PSO flowchart is similar to Fig. 3. The iterations terminate

after a certain number, based on tryeandeerror of the best cost
convergence. Also, the used PSO parameters of this paper are based
on Table 1.
2.4.2. Objective function definition
The particles are evaluated by a cost function as a performance

index. IAE, ISE, ITAE, and ITSE objective functions are considered
because of their good performance for PID as Eqs. 16e19,
respectively.
2561
IAE¼
ð∞

0

jeðtÞjdt (16)

ISE¼
ð∞

0

e2ðtÞdt (17)

ITAE¼
ð∞

0

tjeðtÞjdt (18)

ITSE¼
ð∞

0

te2ðtÞdt (19)

In the two-point kinetics model, two PIDs are optimized
simultaneously. Distinct cost functions are defined for each node:

Fj ¼ðdesired performance indexÞj (20)

where Fj: cost function associated with each node.
Minimizing the cost function of one node may increase the cost

of another node. Therefore, the Euclidean norm may be used as a
Pareto front to maintain the balance between them [17]. On the
Pareto front of this work, the minimum distance to the optimal
response is considered. In this study, the ideal answer is zero.
Hence, the main cost function (F) is defined in the Euclidean norm
of the two cost functions as Eq. (21).

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F21 þ F22

q
(21)
3. Results and discussion

The MATLAB/SIMULINK environment has been used to simulate
the reactor dynamics model and the tuned PID. A short-time
transient as the 100%/50%/100% power demand with theH30%
=min ramp is considered for the controlling system and PSO



Fig. 11. Normalized AO (DI) of the core.
Fig. 13. Core AXOI.
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optimization. The changing level is divided into four regions. Each
region is controlled by a distinct PID, which is tuned by PSO. Table 2
illustrates the analytical result for each scenario of the performance
indexes used in optimization. The Euclidean norm of the two nodes
and over/under-shoot, IAE, ISE, ITAE, and ITSE results of the core are
shown for each performance index method.

Fig. 4 shows the simulation results in the tuned and not-tuned
(empirically tuned) controlling system.

Fig. 5 shows the normalized Euclidean norms (costs) over the
NFE. It is generally shown that square error performance indexes
have a lower cost value but delay convergence. Whereas the ab-
solute error performance indexes have higher cost value, but faster
convergence.

The relative precursor densities are shown in Fig. 6. Their
behavior is proportional to the changes in power levels (Fig. 4).

Fig. 7 illustrates the bottom and top control rods speed (the
control signal), which are important in applying to hardware
drivers. It is observed that their oscillation range is limited by the
length of the control rod without excess control requirement, in all
performance indexes.

The induced reactivity of the control rods movement leads the
Fig. 12. Relative neutron density vs. the DI.
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core power to the desired value. The behaviors of two half control
rods shown in Fig. 8 are smoothed considering their worth. It is
observed the pattern of changes in the power level.

The small difference in power changes of the two nodes due to
the low AO (�10% in this work), as well as the same behavior in
power change, leads to similarity and proximity changes in the
reactivities.

Figs. 9 and 10 are shown the total reactivity of the bottom and
top core, respectively. In steady-states, i.e. regions 2 and 3, the total
reactivities are limited to zero due to the reactivity feedbacks, based
on all performance indexes.

Figs. 11 and 12 show DI over time and nr over DI, respectively. It
is shown, DI is bound into �10% nr ð1±5%Þ range.

Also, AXOI must be limited in an acceptable range. Fig. 13
illustrated this matter.

4. Conclusion

In this paper, the two-point kinetics model of a typical PWR
nuclear reactor was considered for load-following issue by using a
tuned standard PID. PID gains optimization was performed by the
PSO algorithm. Conventional IAE, ISE, ITAE, and ITSE objective
functions were assessed as performance indexes for PID gains
optimization. It was shown that ITAE and ITSE have less over/
under-shoot than IAE and ISE, especially in steady-state regions.
Also, it was generally shown that square error performance indexes
(ISE and ITSE) have lower cost value with delay in the convergence.
Whereas the absolute error performance indexes (IAE and ITAE)
have higher cost value with faster convergence. Eventually, by us-
ing all performance indexes in the PSO optimization algorithm, the
results of the controlling system have good performance, fast
control response, and accuracy than approximate and empirical
tuning methods.
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