• Title/Summary/Keyword: Non-linear Vibration

Search Result 403, Processing Time 0.035 seconds

Non-linear Vibration of a System Incorporating a Hysteretic Damper (비선형 히스테리시스 댐퍼를 갖는 진동계의 해석)

  • 양성영;장서일;김상주
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.531-535
    • /
    • 2000
  • A three-parameter model of viscoelastic damper which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time intergration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

Vibration of Non-linear System under Random Parametric Excitations by Probabilistic Method (불규칙 매개변수 가진을 받는 비선형계의 확률론적 진동평가)

  • Lee, Sin-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.72-79
    • /
    • 2006
  • Vibration of a non-linear system under random parametric excitations was evaluated by probabilistic methods. The non-linear characteristic terms of a system structure were quasi-linearized and excitation terms were remained as they were An analytical method where the square mean of error was minimized was used An alternative method was an energy method where the damping energy and restoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.445-451
    • /
    • 2005
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

Modelling and Analysis of a Vibrating System Incorporating a Viscoelastic Damper (비선형 점탄성 댐퍼를 포함한 진동시스템의 모델링 및 해석)

  • Yang, Seong-Young;Chang, Seo-Il;Kim, Sang-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.449-454
    • /
    • 2000
  • A three-parameter model of viscoelastic damper, which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by three-dimensional non-linear dynamical system of equations. The harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time integration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

Quasi-linearization of non-linear systems under random vibration by probablistic method (확률론 방법에 의한 불규칙 진동 비선형 계의 준선형화)

  • Lee, Sin-Young;Cai, G.Q.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.785-790
    • /
    • 2008
  • Vibration of a non-linear system under random parametric excitations was evaluated by probablistic methods. The non-linear characteristic terms of a system were quasi-linearized and excitation terms were remained as they were given. An analytical method where the square mean of error was minimized was ysed. An alternative method was an energy method where the damping energy and rstoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

  • PDF

Vibration Evaluation of Non-linear System under Random Excitations by Probabilistic Method (불규칙 가진을 받는 비선형계의 확률론적 진동평가)

  • Lee Sin-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.113-114
    • /
    • 2006
  • Vibration of a non-linear system under random excitations was evaluated by probabilistic methods. The non-linear characteristic terms of a system structure were quasi-linearized and excitation terms were remained as they were. An analytical method where the square mean of error was minimized was used. An alternative method was an energy method where the damping energy and restoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

  • PDF

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.129-133
    • /
    • 2004
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

  • PDF

A study on the dynamic characteristics of non-linear dynamic vibration absorber excited by harmonic ground motion (조화운동하는 기반상에서 작동하는 비선형 동흡진기의 동특성에 관한 연구)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.131-136
    • /
    • 1988
  • This study is a research on the dynamic characteristics of non-linear dynamic vibration absorber in which harmonic motion is applied to the foundation of the main system. The amplitude ratio of the system with non-linear dynamic vibration absorber was obtained by harmonic balance methods and the unstable region was determined by stability analysis. As a result of study, the amplitude ratio decreases as mass ratio increases.

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

A study on the dynamic vibration absorber having non-linear spring and linear damper (非線型 스프링과 線型감쇠를 가지는 動吸振器에 관한 硏究)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.473-478
    • /
    • 1987
  • In this paper the optimum values of natural frequency ratio and damping ratio for damped systems were studied by numerical analysis. The relation between the amplitude ratio and frequency ratio obtained for the non-linear dynamic vibration absorber was found and it was compared with that of linear system. The results shows that the optimum frequency ratio decreases and the optimum damping ratio increases when the mass ratio of the damped system increases. The resonance frequency ratio and amplitude ratio decrease as mass ratio increases for the non-linear spring system.