• 제목/요약/키워드: Navier-Stokes solution

검색결과 241건 처리시간 0.019초

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY CONDITIONS

  • Bae, Hyeong-Ohk;Kang, Kyungkeun;Kim, Myeonghyeon
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.597-621
    • /
    • 2016
  • We present regularity conditions for suitable weak solutions of the Navier-Stokes equations with slip boundary data near the curved boundary. To be more precise, we prove that suitable weak solutions become regular in a neighborhood boundary points, provided the scaled mixed norm $L^{p,q}_{x,t}$ with 3/p + 2/q = 2, $1{\leq}q$ < ${\infty}$ is sufficiently small in the neighborhood.

정규격자를 사용한 비압축성 Navier-Stokes 방정식의 수치해석을 위한 압력 Poisson 방정식의 이산화 (Discretization of Pressure-Poisson Equation for Solving Incompressible Navier-Stokes Equations Using Non-Staggered Grid)

  • 김연규;김형태;김정중
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.96-101
    • /
    • 1998
  • Various discretiation methods of Laplacian operator in the Pressure-Poisson equation are investigated for the solution of incompressible Navier-Stokes equations using the non-staggered grid. Laplacian operators previously proposed by other researchers are applied to a Driven-Cavity problem. The computational results are compared with those of Ghia. The results show the characteristics of the discrete Laplacian operators.

  • PDF

LOCAL REGULARITY OF THE STEADY STATE NAVIER-STOKES EQUATIONS NEAR BOUNDARY IN FIVE DIMENSIONS

  • Kim, Jaewoo;Kim, Myeonghyeon
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.557-569
    • /
    • 2009
  • We present a new regularity criterion for suitable weak solutions of the steady-state Navier-Stokes equations near boundary in dimension five. We show that suitable weak solutions are regular up to the boundary if the scaled $L^{\frac{5}{2}}$-norm of the solution is small near the boundary. Our result is also valid in the interior.

  • PDF

OPTIMAL CONTROL PROBLEM OF NAVIER-STOKES EQUATIONS FOR THE DRIVEN CAVITY FLOW

  • Lee, Yong-Hun
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.291-301
    • /
    • 1999
  • We study an optimal control problem of the fluid flow governed by the navier-Stokes equations. The control problem is formulated with the flow in the driven cavity. Existence of an optimal solution and first-order optimality condition of the optimal control are derived. We report the numerical results for the finite eleme수 approximations of the optimal solutions.

A MIXED FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS

  • Elakkad, Abdeslam;Elkhalfi, Ahmed;Guessous, Najib
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1331-1345
    • /
    • 2010
  • This paper describes a numerical solution of Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like ADINA system.

ON THE LINEARIZATION OF DEFECT-CORRECTION METHOD FOR THE STEADY NAVIER-STOKES EQUATIONS

  • Shang, Yueqiang;Kim, Do Wan;Jo, Tae-Chang
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1129-1163
    • /
    • 2013
  • Based on finite element discretization, two linearization approaches to the defect-correction method for the steady incompressible Navier-Stokes equations are discussed and investigated. By applying $m$ times of Newton and Picard iterations to solve an artificial viscosity stabilized nonlinear Navier-Stokes problem, respectively, and then correcting the solution by solving a linear problem, two linearized defect-correction algorithms are proposed and analyzed. Error estimates with respect to the mesh size $h$, the kinematic viscosity ${\nu}$, the stability factor ${\alpha}$ and the number of nonlinear iterations $m$ for the discrete solution are derived for the linearized one-step defect-correction algorithms. Efficient stopping criteria for the nonlinear iterations are derived. The influence of the linearizations on the accuracy of the approximate solutions are also investigated. Finally, numerical experiments on a problem with known analytical solution, the lid-driven cavity flow, and the flow over a backward-facing step are performed to verify the theoretical results and demonstrate the effectiveness of the proposed defect-correction algorithms.

AN IMPLICIT NUMERICAL SCHEME FOR SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON CURVILINEAR GRIDS

  • Fayyaz, Hassan;Shah, Abdullah
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.881-898
    • /
    • 2018
  • This article deals with implementation of a high-order finite difference scheme for numerical solution of the incompressible Navier-Stokes equations on curvilinear grids. The numerical scheme is based on pseudo-compressibility approach. A fifth-order upwind compact scheme is used to approximate the inviscid fluxes while the discretization of metric and viscous terms is accomplished using sixth-order central compact scheme. An implicit Euler method is used for discretization of the pseudo-time derivative to obtain the steady-state solution. The resulting block tridiagonal matrix system is solved by approximate factorization based alternating direction implicit scheme (AF-ADI) which consists of an alternate sweep in each direction for every pseudo-time step. The convergence and efficiency of the method are evaluated by solving some 2D benchmark problems. Finally, computed results are compared with numerical results in the literature and a good agreement is observed.

A BOUNDARY CONTROL PROBLEM FOR THE TIME-DEPENDENT 2D NAVIER-STOKES EQUATIONS

  • Kim, Hongchul;Kim, Seon-Gyu
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.57-84
    • /
    • 2008
  • In this paper, a boundary control problem for a flow governed by the time-dependent two dimensional Navier-Stokes equations is considered. We derive a mathematical formulation and a relevant process for an appropriate control along the part of the boundary to minimize the drag due to the flow. After showing the existence of an optimal solution, the first order optimality conditions are derived. The strict differentiability of the state solution in regard to the control parameter shall be exposed rigorously, and the necessary conditions along with the system for the optimal solution shall be deduced in conjunction with the evaluation of the first order Gateaux derivative to the performance functional.

  • PDF

DECAY RESULTS OF WEAK SOLUTIONS TO THE NON-STATIONARY FRACTIONAL NAVIER-STOKES EQUATIONS

  • Zhaoxia Liu
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.637-669
    • /
    • 2024
  • The goal of this paper is to study decay properties of weak solutions to Cauchy problem of the non-stationary fractional Navier-Stokes equations. By using the Fourier splitting method, we give the time L2-decay rate of weak solutions, which reveals that L2-decay is generally determined by its linear generalized Stokes flow. In second part, we establish various decay results and the uniqueness of the two dimensional fractional Navier-Stokes flows. In the end of this article, as an appendix, the existence of global weak solutions is given by making use of Galerkin' method, weak and strong compact convergence theorems.