DOI QR코드

DOI QR Code

LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY CONDITIONS

  • Received : 2015.03.22
  • Published : 2016.05.01

Abstract

We present regularity conditions for suitable weak solutions of the Navier-Stokes equations with slip boundary data near the curved boundary. To be more precise, we prove that suitable weak solutions become regular in a neighborhood boundary points, provided the scaled mixed norm $L^{p,q}_{x,t}$ with 3/p + 2/q = 2, $1{\leq}q$ < ${\infty}$ is sufficiently small in the neighborhood.

Keywords

References

  1. S. N. Antontsev and H. B. de Oliveira, Navier-Stokes equations with absorption under slip boundary conditions: existence, uniqueness and extinction in time, Kyoto Conference on the Navier-Stokes Equations and their Applications, 21-41, RIMS Kkyroku Bessatsu, B1, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.
  2. H. Bae, H. Choe, and B. Jin, Pressure representation and boundary regularity of the Navier-Stokes equations with slip boundary condition, J. Differential Equations 244 (2008), no. 11, 2741-2763. https://doi.org/10.1016/j.jde.2008.02.039
  3. H. Beirao da Veiga, On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions, Comm. Pure Appl. Math. 58 (2005), no. 4, 771-831.
  4. L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771-831. https://doi.org/10.1002/cpa.3160350604
  5. H. Choe and J. L. Lewis, On the singular set in the Navier-Stokes equations, J. Funct. Anal. 175 (2000), no. 2, 348-369. https://doi.org/10.1006/jfan.2000.3582
  6. L. Escauriaza, G. Seregin, and V. Sverak, $L^{3,{\infty}}$-solutions of Navier-Stokes equations and backward uniqueness, Russian Math. Surveys 58 (2003), no. 2, 211-250. https://doi.org/10.1070/RM2003v058n02ABEH000609
  7. E. Fabes, B. Jones, and N. Riviere, The initial value problem for the Navier-Stokes equations with data in $L^p$, Arch. Ration. Mech. Anal. 45 (1972), 222-248. https://doi.org/10.1007/BF00281533
  8. Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations 62 (1986), 186-212. https://doi.org/10.1016/0022-0396(86)90096-3
  9. S. Gustafson, K. Kang, and T.-P. Tsai, Regularity criteria for suitable weak solutions of the Navier-Stokes equations near the boundary, J. Differential Equations 226 (2006), no. 2, 594-618. https://doi.org/10.1016/j.jde.2005.12.007
  10. S. Gustafson, K. Kang, and T.-P. Tsai, Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations, Comm. Math. Phys. 273 (2007), no. 1, 161-176. https://doi.org/10.1007/s00220-007-0214-6
  11. E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1950), 213-231. https://doi.org/10.1002/mana.3210040121
  12. S. Itoh and A. Tani, The initial value problem for the non-homogeneous Navier-Stokes equations with general slip boundary condition, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 4, 827-835. https://doi.org/10.1017/S0308210500000457
  13. K. Kang, On boundary regularity of the Navier-Stokes equations, Comm. Partial Differential equations 29 (2004), no. 7-8, 955-987. https://doi.org/10.1081/PDE-200033743
  14. J. Kim and M. Kim, Local regularity of the Navier-Stokes equations near the curved boundary, J. Math. Anal. Appl. 363 (2010), no. 1, 161-173. https://doi.org/10.1016/j.jmaa.2009.08.015
  15. O. A. Ladyzenskaja, On the uniqueness and smoothness of generalized solutions of the Navier-Stokes equations, Zapiski Scient. Sem. LOMI 5 (1967), 169-185.
  16. O. A. Ladyzenskaja and G. A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999), no. 4, 356-387. https://doi.org/10.1007/s000210050015
  17. O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., 1968.
  18. J. Leray, Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248. https://doi.org/10.1007/BF02547354
  19. F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math. 51 (1998), no. 3, 241-257. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
  20. P. Maremonti, Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space, Ric. Mat. 40 (1991), no. 1, 81-135.
  21. T. Ohyama, Interior regularity of weak solutions of the time-dependent Navier-Stokes equation, Proc. Japan Acad. 36 (1960), 273-277. https://doi.org/10.3792/pja/1195524029
  22. G. Prodi, Un teorama di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959), 173-182. https://doi.org/10.1007/BF02410664
  23. V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math. 66 (1976), no. 2, 535-552. https://doi.org/10.2140/pjm.1976.66.535
  24. V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), no. 2, 97-112. https://doi.org/10.1007/BF01626512
  25. V. Scheffer, The Navier-Stokes equations on a bounded domain, Comm. Math. Phys. 73 (1980), no. 1, 1-42. https://doi.org/10.1007/BF01942692
  26. V. Scheffer, Boundary regularity for the Navier-Stokes equations in a half-space, Comm. Math. Phys. 85 (1982), no. 2, 275-299. https://doi.org/10.1007/BF01254460
  27. G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech. 4 (2002), no. 1, 1-29. https://doi.org/10.1007/s00021-002-8533-z
  28. G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 271 (2000), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31, 204-223, 317; translation in J. Math. Sci. (N. Y.) 115 (2003) no. 6, 2820-2831.
  29. G. A. Seregin, T. N. Shilkin, and V. A. Solonnikov, Boundary partial regularity for the Navier-Stokes equations, J. Math. Sci. 132 (2006), no. 3, 339-358. https://doi.org/10.1007/s10958-005-0502-7
  30. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187-195. https://doi.org/10.1007/BF00253344
  31. R. Shimada, On the $L^p$-$L^q$ maximal regularity for Stokes equations with Robin boundary condition in a bounded domain, Math. Methods Appl. Sci. 30 (2007), no. 3, 257-289. https://doi.org/10.1002/mma.777
  32. H. Sohr, Zur Regularitatstheorie der instationaren Gleichungen von Navier-Stokes, Math. Z. 184 (1983), no. 3, 359-375. https://doi.org/10.1007/BF01163510
  33. V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with mixed norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288 (2002), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 32, 204-231, 273-274; translation in J. Math. Sci. (N. Y.) 123 (2004), no. 6, 4637-4653.
  34. V. A. Solonnikov and V. E. Scadilov, A certain boundary value problems for the stationary system of Navier-Stokes equations, Tr. Mat. Inst. Steklova 125 (1973), 196-210; translation in On a boundary value problems for the stationary system of Navier-Stokes equations, Proc. Steklov Inst. Math. 125 (1973), 186-199.
  35. M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 4, 437-458. https://doi.org/10.1002/cpa.3160410404
  36. S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math. 69 (1990), no. 3, 237-254. https://doi.org/10.1007/BF02567922

Cited by

  1. Local regularity criteria of a suitable weak solution to MHD equations vol.37, pp.4, 2017, https://doi.org/10.1016/S0252-9602(17)30056-5