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A MIXED FINITE ELEMENT METHOD FOR
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Abstract. This paper describes a numerical solution of Navier-Stokes
equations. It includes algorithms for discretization by finite element meth-
ods and a posteriori error estimation of the computed solutions. In order
to evaluate the performance of the method, the numerical results are com-
pared with some previously published works or with others coming from
commercial code like ADINA system.

AMS Mathematics Subject Classification : 65F10, 65F05.
Key words and phrases : Incompressible Navier-Stokes Equations, Mixed
Finite Element Method, A posteriori error estimates, Iterative solvers, Ad-
ina system.

1. Introduction

A posteriori error analysis in problems related to fluid dynamics is a subject
that has received a lot of attention during the last decades. In the conform-
ing case there are several ways to define error estimators by using the residual
equation. In particular, for the Stokes problem, M. Ainsworth, J. Oden [1], R.E.
Bank, B.D. Welfert [3], C. Carstensen, S.A. Funken [6], and R. Verfurth [16]
introduced several error estimators and provided that they are equivalent to the
energy norm of the errors. Other works for the stationary Navier-Stokes problem
have been introduced in [12, 14, 17, 18].
This paper describes a numerical solutions of partial differential equations (PDEs)
that are used to model steady incompressible fluid flow. It is structured as a
stand-alone package for studying discretization algorithms for PDEs and for ex-
ploring and developing algorithms in numerical linear and nonlinear algebra for
solving the associated discrete systems. It can also be used as a pedagogical
tool for studying these issues, or more elementary ones such as the properties
of Krylov subspace iterative methods. The latter two PDEs constitute the basis
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for computational modeling of the flow of an incompressible Newtonian fluid.
For the equations , we offer a choice of two-dimensional domains on which the
problem can be posed, along with boundary conditions and other aspects of
the problem, and a choice of finite element discretizations on a quadrilateral
element mesh. whereas the discrete Navier-Stokes equations require a method
such as the generalized minimum residual method (GMRES) , which is designed
for non symmetric systems [7]. The key for fast solution lies in the choice of
effective preconditioning strategies. The package offers a range of options, in-
cluding algebraic methods such as incomplete LU factorizations, as well as more
sophisticated and state-of-the-art multigrid methods designed to take advantage
of the structure of the discrete linearized Navier-Stokes equations. In addition,
there is a choice of iterative strategies, Picard iteration or Newton’s method, for
solving the nonlinear algebraic systems arising from the latter problem.
Section 2 presents the model problem used in this paper. The discretization by
mixed finite elements described is in section 3. Section 4 shows the methods
of a posteriori error bounds of the computed solution. Numerical experiments
carried out within the framework of this publication and their comparisons with
other results are shown in section 5.

2. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

We consider the steady-state Navier-Stokes equations for the flow of a New-
tonian incompressible viscous fluid with constant viscosity:

{
−ν∇2−→u +−→u .∇−→u +∇p =

−→
f ,

∇.−→u = 0,
(1)

where ν > 0 is a given constant called the kinematic viscosity.−→u is the fluid velocity, p is the pressure field, and ∇ is the gradient and ∇. is
the divergence operator.
The boundary value problem that is considered is the system (1) posed on two
or three-dimensional domain Ω, together with boundary conditions on ∂Ω =
∂ΩD

⋃
∂ΩN given by

−→u =
−→
W on ∂ΩD, ν

∂−→u
∂n

−−→n p =
−→
0 on ∂ΩN , (2)

where −→n denote the outward pointing normal to the boundary.
This system is the basis for computational modeling of the flow of an incom-
pressible Newtonian fluid such as air or water. The presence of the nonlinear
convection term −→u .∇−→u means that boundary value problems associated with
the Navier-Stokes equations can have more than one solution.
Mixed finite element discretization of the weak formulation of the Navier- Stokes
equations gives rise to a nonlinear system of algebraic equations. Two classical
iterative procedures for solving this system are Newton iteration and Picard it-
eration.
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We define the spaces

~1(Ω) = {u : Ω → IR/u, ∂u
∂x ,

∂u
∂y ∈ L2(Ω)} (3)

H1
E = {−→u ∈ ~1(Ω)d/−→u =

−→
W on ∂ΩD} (4)

H1
E0

= {−→v ∈ ~1(Ω)d/−→v =
−→
0 on ∂ΩD}. (5)

Then the standard weak formulation of the Navier-Stokes flow problem (1) and
(2) is the following:
Find −→u ∈ H1

E and p ∈ L2(Ω) such that

ν

∫

Ω

∇−→u .∇−→v +

∫

Ω

(−→u .∇−→u ).−→v −
∫

Ω

p(∇.−→v ) =

∫

Ω

f.−→v , for all −→v ∈ H1
E0

(6)

∫

Ω

q(∇.−→u ) = 0 for all q ∈ L2(Ω). (7)

Let the trilinear form
c : H1

E0
×H1

E0
×H1

E0
−→ R defined as follows:

c(−→z ;−→u ,−→v ) =

∫

Ω

(−→z .∇−→u ).−→v . (8)

The convection term is skew-symmetric: c(−→z ;−→u ,−→v ) = −c(−→z ;−→v ,−→u ).
Establishing continuity, that is,

c(−→z ;−→u ,−→v ) ≤ Γ‖ 5 −→z ‖ ‖ 5 −→u ‖ ‖ 5 −→v ‖, (9)

see Girault δ Raviart [10, p. 284].
We define

VE0 = {−→z ∈ H1
E0

;∇.−→z = 0 in Ω}, (10)

‖−→f ‖∗ = sup−→v ∈VE0

(
−→
f ,−→v )

‖∇−→v ‖ .

Then a well-known (sufficient) condition for uniqueness (see [10, Theorem 2.2])
is that forcing function is small in the sense that

‖−→f ‖∗ ≤ ν2

Γ∗
, (11)

where Γ∗ is the best possible constant such that (9) holds.

3. Mixed finite element approximation

A discrete weak formulation is defined using finite dimensional spaces Xh
0 ⊂

H1
E0

and Mh ⊂ L2(Ω). Specifically, given a velocity solution spaces Xh
E , the

discrete version of (6)-(7) is:
find −→u h ∈ Xh

E and ph ∈ Mh such that

ν

∫

Ω

∇−→u h.∇−→v h +

∫

Ω

(−→u h.∇−→u h).
−→v h −

∫

Ω

ph(∇.−→v h) =

∫

Ω

−→
f .−→v h, (12)
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∫

Ω

qh(∇.−→u h) = 0, (13)

for all −→v h ∈ Xh
0 and qh ∈ Mh.

We define the appropriate bases for the finite element spaces, leading to a non
linear system of algebraic equations. Linearization of this system using Newton
iteration gives the finite dimensional system: find δ−→u h ∈ Xh

0 and δph ∈ Mh

such that

c(δ−→u h;
−→u h,

−→v h) + c(−→u h; δ
−→u h,

−→v h) + ν
∫
Ω
∇δ−→u h.∇−→v h − ∫

Ω
δph(∇.−→v h) = Rk(

−→v h),

∫

Ω

qh(∇.δ−→u h) = rk(qh), (14)

for all −→v h ∈ Xh
0 and qh ∈ Mh. Here, Rk(

−→v h) and rk(qh) are the non linear
residuals associated with the discrete formulations (12) and(13).
We use a set of vector-valued basis functions {−→ϕ j}, so that

−→u h =

nu∑
1

uj
−→ϕ j +

nu+n∂∑
nu+1

uj
−→ϕ j , δ−→u h =

nu∑

j=1

∆uj
−→ϕ j , (15)

and we fix the coefficients uj : j = nu + 1, . . . , nu + n∂ , so that the second
term interpolates the boundary data on ∂ΩD.
We introduce a set of pressure basis functions {Ψk} and set

ph =

np∑

k=1

pkΨk, δph =

np∑

k=1

∆pkΨk, (16)

where nu and np are the numbers of velocity and pressure basis functions, re-
spectively.
We obtain a system of linear equations

(
νA+N +W tB

B 0

)(
∆U
∆P

)
=

(
f
g

)
. (17)

This system is referred to as the discrete Newton problem.
The matrix A is the vector Laplacian matrix and B is the divergence matrix

A = [aij ], aij =

∫

Ω

∇−→ϕ i.∇−→ϕ j , (18)

B = [bkj ], bkj = −
∫

Ω

Ψk∇.−→ϕ j , (19)

for i and j=1, . . . , nu and k=1, . . . , np.
The vector-convection matrix N and the Newton derivative matrix W are given
by

N = [nij ], nij =

∫

Ω

(−→u h.∇−→ϕ j).
−→ϕ i, (20)
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W = [Wij ], Wij =

∫

Ω

(−→ϕ j .∇−→u h).
−→ϕ i, (21)

for i and j=1, . . . , nu. The Newton derivative matrix is symmetric.
The right-hand side vectors in (17) are the non linear residuals associated with
the current discrete solution −→u h and ph.

f = [fi], fi =

∫

Ω

f.−→ϕ i −
∫

Ω

(−→u h.∇−→u h).
−→ϕi − ν

∫

Ω

∇−→u h.∇−→ϕ i +

∫

Ω

ph(∇.−→ϕ i) (22)

g = [gk], gk = −
∫

Ω

(Ψk.∇.−→u h). (23)

For Picard iteration we give the discrete problem(
νA+N tB

B 0

)(
∆U
∆P

)
=

(
f
g

)
. (24)

The lowest order mixed approximations like Q1 −P0 and Q1 −Q1 are unstable.
The discrete approximation is stabilised by replacing the zero block in the New-
ton system (17) and the system (24) with stabilisation matrix.
The stabilized analogue of the system (24) is given by(

νA+N tB
B − 1

νC

)(
U
P

)
=

(
f
g

)
, (25)

where C is the Stokes stabilization matrix in the case of Q1 − P0 or Q1 − Q1

mixed approximation, and is the zero matrix otherwise.
For the stokes problem the stabilization matrix is C = 1

4diag[C
∗, . . . , C∗] with

C∗ is given by

C∗ = hxhy




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


 . (26)

We use a stabilized element pair Q1−P0, This is the most famous example of an
unstable element pair, using bilinear approximation for velocity and a constant
approximation for the pressure.
We use two iterative methods for solving the nonsymmetric systems: The gen-
eralized minimum residual method (GMRES) and BiConjugate Gradients Sta-
bilized Method (BICGSTAB).
Preconditioning is a technique used to enhance the convergence of an iterative
method to solve a large linear systems iteratively. Instead of solving a system
Λx = b, one solves a system P−1Λx = P−1b, where P is the preconditioner.
A good preconditioner should lead to fast convergence of the Krylov method.
Furthermore, systems of the form Pz = r should be easy to solve.
For the Navier-Stokes equations, the objective is to design a preconditioner, that
increases the convergence of an iterative method independent of the Reynolds
number and number of gridpoints. We use a least-squares commutator precon-
ditioning [15].
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4. A posteriori error bounds

We restrict of enclosed flow with ∂Ω = ∂ΩD and
−→
W =

−→
0 .

A clever choice (due to R. E. Bank, A. Weiser [2]) is the correction space

ΘT = QT ⊕BT

consisting of edge and interior bubble functions, respectively;

QT = span{ψE : E ∈ ε(T ) ∩ (εh,Ω ∪ εh,N )},
where ψE : T → R is the quadratic (or biquadratic) edge-bubble that is zero
on the other two (or three) edges of T (see ([17, pages 9-10]). BT is the space
spanned by interior cubic (or biquadratic) bubbles φT such that 0 ≤ φT ≤ 1 ,
φT = 0 on ∂T and φT = 1 only at the centroid.
Let the continuous bilinear forms a : H1 ×H1 −→ R and b : H1 × L2(Ω) −→ R
a(−→u ,−→v ) = ν

∫
Ω
∇−→u .∇−→v , b(−→v , q) = − ∫

Ω
q(∇.−→v ).

Given the continuous functional l : H1 −→ R
l(−→v ) =

∫
Ω

−→
f .−→v ;

the underlying weak formulation (6)-(7) may be restated as
Find −→u ∈ H1

E0
and p ∈ L2(Ω) such that

{
a(−→u ,−→v ) + c(−→u ;−→u ,−→v ) + b(−→v , p) = l(−→v ), for all −→v ∈ H1

E0

b(−→u , q) = 0, for all q ∈ L2(Ω).
(27)

With a conforming mixed approximation, the corresponding discrete problem
(13)-(14) is given by Find −→u h ∈ Xh

0 and ph ∈ Mh such that:
{

a(−→u h,
−→v h) + c(−→u h;

−→u h,
−→v h) + b(−→v h, ph) = l(−→v h), for all −→v h ∈ Xh

0 ,
b(−→u h, qh) = 0, for all qh ∈ Mh.

(28)

Our aim is to bound ‖−→u − −→u h‖X and ‖p − ph‖M with respect to the energy
norm for the velocity ‖−→v ‖X = ‖∇−→v ‖ and the quotient norm for the pressure
‖p‖M = ‖p‖0,Ω.
Let the symmetric bilinear form

B((−→u , p); (−→v , q)) = a(−→u ,−→v ) + b(−→u , q) + b(−→v , p),

the continuous B-stability constant

sup
(−→v ,q)∈H1

E0
×L2(Ω)

B((−→w , s); (−→v , q))

(‖∇−→v ‖2 + ‖q‖20,Ω)
1
2

≥ γ(‖∇−→w ‖2) + ‖s‖20,Ω)
1
2 . (29)

Given such a macroelement partitioning, say TM , the discrete incompressibility
constraint in (28) is

b(−→u h, qh)− 1

4

∑

T∈TM

|M |
∑

e∈ΓM

〈[[ph]]e, [[qh]]e〉E = 0, (30)

for all qh ∈ Mh(see[13]), here, |M | is the mean element area within the macroele-
ment M, the set ΓM consists of interior element edges in M, [[ph]]e is the jump
across edge e, and 〈p, q〉E =

∫
E
pq,
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and introducing the functional F ((−→v , q)) = l(−→v ) associated with the forcing
term, we have that the errors −→e = −→u − −→uh ∈ H1

E0
and ε = p − ph ∈ L2(Ω)

associated with (27) and (28) satisfy

B((−→e , ε); (−→v , q)) = B((−→u −−→u h, p− ph); (
−→v , q))

= B((−→u , p); (−→v , q))−B((−→u h, ph); (
−→v , q))

= F ((−→v , q))− c(−→u ;−→u ,−→v )−B((−→u h, ph); (
−→v , q))

= −c(−→u ;−→u ,−→v ) + l(−→v )− a(−→u h,
−→v )− b(−→v , ph)− b(−→u h, q),

for all (−→v , q) ∈ H1
E0

× L2(Ω).
We note that

D(−→u h,
−→e ,−→v ) = c(−→e +−→u h;

−→e +−→u h,
−→v )− c(−→u h;

−→u h,
−→v )

= c(−→u ;−→u ,−→v )− c(−→u h;
−→u h,

−→v ).
(31)

We get

B((−→e , ε); (−→v , q)) +D(−→u h,
−→e ,−→v )

= −c(−→u h;
−→u h,

−→v ) + l(−→v )− a(−→u h,
−→v )− b(−→v , ph)− b(−→u h, q).

We define the equidistributed stress jump operator

−→
R ∗

E =
1

2
[[ν∇−→u h − ph

−→
I ]], (32)

and the interior residuals
−→
RT = {−→f + ν∇2−→u h − −→u h.∇−→u h − ∇ph}/T , and

RT = {∇.−→u h}/T , we find that the errors −→e ∈ H1
E0

and ε ∈ L2(Ω) satisfy the
non linear equation

B((−→e , ε); (−→v , q)) +D(−→u h,
−→e ,−→v ) =

∑
T∈τh

[
(
−→
RT ,

−→v )T −
∑

E∈ε(T )

<
−→
R ∗

E ,
−→v >E

+ (RT , q)T
]
,

(33)

for all (−→v , q) ∈ H1
E0

× L2(Ω).
The error characterization (33) is the starting point for a posteriori error analysis.
The crucial question here is to determine the best way of handling the non linear
term on the left-hand side of (33).
We note that
D(−→u h,

−→e ,−→v ) = c(−→e ;−→e ,−→v ) + c(−→e ;−→u h,
−→v ) + c(−→u h;

−→e ,−→v ).
The problem (33) can be approximated by the linear problem: find −→e ∈ H1

E0

and ε ∈ L2(Ω) such that

c(−→e ;−→u h,
−→v ) + c(−→u h;

−→e ,−→v ) + ν

∫

Ω

∇−→e .∇−→v −
∫

Ω

ε(∇.−→v )

=
∑

T∈τh

[(
−→
RT ,

−→v )T −
∑

E∈ε(T )

<
−→
R ∗

E ,
−→v >E ]−

∫

Ω

q(∇.−→e ) =
∑

T∈τh

(RT , q)T .
(34)

This system corresponds to a Newton linearization about the discrete velocity
solution −→u h.
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We shall concentrate on the stabilized Q1 −P0 or P1 −P0 approximation meth-
ods in two dimensions. Notice that for either of these low order approxima-
tions, the divergence residual RT is piecewise constant and the stress jump

term
−→
R ∗

E is piecewise linear. The other element residual is given by
−→
RT =

{−→f −−→u h.∇−→u h}/T .
We introduce the higher order approximation space ΘT = (QT )

2 for the two
velocity components and compute the element function −→e T ∈ ΘT satisfying the
uncoupled poisson problems

ν(∇−→e T ,∇−→v )T = (
−→
RT ,

−→v )T −
∑

E∈ε(T )

<
−→
R ∗

E ,
−→v >E , for all −→v ∈ ΘT . (35)

With εT = ∇.−→u h, the local error estimator is given by the combination of the
’energy norm’ of the velocity error and the L2 norm of the element divergence
error, that is

η2T = ‖∇−→e T ‖2T + ‖εT ‖2T = ‖∇−→e T ‖2T + ‖∇.−→u h‖2T , (36)

and the global error estimator is : η = (
∑

T∈τh
η2T )

1
2

Given a rectangular element, with horizontal and vertical edges of lengths hx,
and hy respectively.
The rectangle aspect ratio βT = max{hx/hy, hy/hx}.
Definition 1. (Aspect ratio condition).
A sequence of rectangular grids {τh} is said to be shape regular if there exists a
maximum rectangle edge ratio β∗ such that every element in τh satisfies
1 ≤ βT ≤ β∗.
Proposition. Let condition (11) be satisfied so that there exists a unique

solution (−→u , p) to the variational problem (27) in the enclosed flow case −→u =
−→
0

on ∂Ω. If the discrete problem (28) is solved using a grid of Q1−P0 rectangular
elements with a pressure jump stabilization in (30), then the estimator ηT in
(35) satisfies the upper bound

‖∇(−→u −−→u h)‖+ ‖p− ph)‖0,Ω ≤ C(
∑

T∈τh

η2T )
1
2 , (37)

where C depends only on the aspect ratio constant given in definition 1 and the
continuous B-stability constant in (29).

5. Numerical simulation

In this section some numerical results of calculations with Mixed finite element
Method and ADINA system will be presented. Using our solver, We run two
traditional test problems (driven cavity flow [4, 7, 8, 9, 19] and L-shaped domain
[11, 15]) with a number of different model parameters. We can introduce by
increasing Reynold’s number, and we discuss the performance of our code.
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Example 1. Square domain, regularized cavity boundary condition.
This is a classic test problem used in fluid dynamics, known as driven-cavity
flow. It is a model of the flow in a square cavity with the lid moving from left
to right. Let the computational model:
{y = 1;−1 ≤ x ≤ 1/ux = 1− x4}, a regularized cavity.
The streamlines are computed from the velocity solution by solving the poisson
equation numerically subject to a zero Dirichlet boundary condition.
We have solved the problem for three different Reynold’s numbers: 100, 600,
and 2000.

Fig.1. Uniform streamline plot (left) associated with a 64 × 64 square grid of
a Q1 − Q0 approximation, and uniform streamline plot(right) computed with
ADINA system, with Reynold number Re = 100.

Fig.2. Uniform streamline plot (left) associated with a 64 × 64 square grid of
a Q1 − Q0 approximation, and uniform streamline plot(right) computed with
ADINA system, with Reynold number Re = 600.
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Fig.3. Uniform streamline plot (left) associated with a 64 × 64 square grid of
a Q1 − Q0 approximation, and uniform streamline plot(right) computed with
ADINA System, with Reynold number Re = 2000.

Fig.4. Velocity vectors solution by MFE (left) and velocity vectors solution
(right) computed with ADINA system with a 64×64 square grid and Re = 100.

Fig.5. Velocity vectors solution by MFE (left) and velocity vectors solution
(right) computed with ADINA system with a 64×64 square grid and Re = 600.
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Fig.6. Velocity vectors solution by MFE (left) and velocity vectors solution
(right) by ADINA system with a 64× 64 square grid and Re = 2000.
The solution shown in figure 3 corresponds to a Reynolds number of 2000. The
particles in the body of the fluid move in a circular trajectory. Steady flow in
a two dimensional cavity is not stable for Reynolds number much greater than
104. Indeed, we have made calculations for Reynolds number 104, in addition,
our code does not converge because the turbulence phenomena is not taken into
account in our model.
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l)
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 Bicgstab

Fig.7. Iteration counts for GMRES and Bicgstab with least-squares commutator
preconditioning.

Table 1. Estimated errors for regularized driven cavity flow using Q1 − P0

approximation for the flow with Reynolds number Re = 100.‖∇.−→u h‖Ω estimated
velocity divergence error. η the global error estimator.

‖∇.−→u h‖Ω η
8× 8 8.704739e-002 1.720480e+000

16× 16 3.115002e-002 1.084737e+000
32× 32 9.545524e-003 5.919904e-001
64× 64 2.676623e-003 3.160964e-001
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Table 2. CPU time in seconds for the different approximations with various
coarse meshes.

Q1 − P0 Q1 −Q1 Q2 −Q1 Q2 − P1

8× 8 1.2344 0.9375 1.1406 1.2188
16× 16 1.8281 1.2813 1.7031 1.7188
32× 32 4.3281 3.1250 3.5938 4.1094
64× 64 18.7656 15.4688 23.2969 26.1250

Example 2. L-shaped domain Ω, parabolic inflow boundary condition, natural
outflow boundary condition.
This example represents flow in a rectangular duct with a sudden expansion;
a Poiseuille flow profile is imposed on the inflow boundary (x=-1; 0 ≤ y ≤ 1),
and a no-flow (zero velocity) condition is imposed on the walls. The Neumann
condition (37) is applied at the outflow boundary (x=5; −1 < y < 1) and
automatically sets the mean outflow pressure to zero.

{
ν ∂ux

∂x − p = 0
∂uy

∂x = 0
(38)

Fig.8. Equally spaced streamline plot associated with a 32 × 96 square grid
Q1 − P0 approximation and ν = 1/100.

Fig.9. The solution computed with ADINA system. The plots show the stream-
lines associated with a 32× 96 square grid and ν = 1/100.
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Fig.10. Velocity vectors solution by MFE, with a 32 × 96 square grid and ν =
1/100.

Fig.11. The solution computed with ADINA system. The plots show the velocity
vectors solution with a 32× 96 square grid and ν = 1/100.
The two solutions are therefore essentially identical. This is very good indication
that my solver is implemented correctly.
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The increased velocity caused by convection makes it harder for the fluid to flow
around the corner, and a slow-moving component of the fluid becomes entrained
behind the step.There are two sets of streamlines at equally spaced levels plotted
in figure 8; one set is associated with positive treamfunction values and shows
the path of particles introduced at the inflow. these pass over the step and
exit at the outflow. The second set of streamlines is associated with negative
values of the streamfunction. These streamlines show the path of particles in
the recirculation region near the step; they are much closer in value, reflecting
the fact that recirculating flow is relatively slow-moving.
If L is taken to be the height of the outflow region,then the flow pattern shown
in figure 8 corresponds to a Reynolds number of 100. If the viscosity parameter
were an order of magnitude smaller, then the steady flow would be unstable.
The singularity at the origin is an important feature of the flow even in the
convection-dominated case.

6. Conclusion

We were interested in this work in the numeric solution for two dimensional
partial differential equations modeling (or arising from) model steady incom-
pressible fluid flow. It includes algorithms for discretization by mixed finite
element methods and a posteriori error estimation of the computed solutions.
For the test of driven-cavity flow, the particles in the body of the fluid move in
a circular trajectory. Steady flow in a two dimensional cavity is not stable for
Reynolds number much greater than 104.
Our results agree with Adina system.
Numerical results are presented to see the performance of the method, and seems
to be interesting by comparing them with other recent results.
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