• Title/Summary/Keyword: Moving least-square approximation

Search Result 29, Processing Time 0.027 seconds

A Study on the Development of Shape Functions of Polyhedral Finite Elements (다면체 유한요소의 형상함수 개발에 관한 연구)

  • Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.183-189
    • /
    • 2014
  • In this paper, a polyhedral element is presented to solve three-dimensional problems by developing shape functions based on Wachspress coordinates and moving least square approximation. A subdivision of polyhedrons into tetrahedral domains is performed for the construction of shape functions of polyhedral elements, and numerical integration of the weak form is carried out consistently over the tetrahedral domains. The weight functions for moving least square approximation are defined by solving Laplace equation with boundary values based on Wachspress coordinates on polyhedral element faces. Polyhedral elements presented in this paper have similar properties to conventional finite element regarding the continuity, the completeness, the node-element connectivity and the inter-element compatibility. Numerical examples show the effectiveness of the present method for solving three-dimensional problems using polyhedral elements.

Applications of MLS(Moving Least Sqrare)-based Finite Elements for Mechanics Problems Involving Interfaces and Discontinuities (경계 및 불연속의 해결을 위한 이동최소제곱 기반 유한요소의 적용)

  • Lim Jae-Hyuk;Im Se-Young;Cho Young-Sam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.567-574
    • /
    • 2006
  • We present applications of MLS-based finite elements, which enable us to easily treat highly complex nonmatching finite element meshes and discontinuities. The shape functions of MLS-based finite element can be easily generated with the aid of Moving Least Square approximation on the parental domain. The major advantage includes that the position of element nodes as well as the number of the element nodes can be conveniently adjusted according to the nature of the problems under consideration, so that finite-element mesh is straightforwardly adapted to evolving discontinuities and. interfaces. Furthermore, we show that the present MLS-based finite elements are efficiently applied for elastic-plastic deformations, wherein the implicit constraint of incompressibility should be properly handled.

  • PDF

Prediction of Detent Force on Linear Synchronous Motor by means of Moving Least Square Method (이동최소자승법을 이용한 선형동기전동기의 디텐트력 특성 예측)

  • Kim, Young-Kyoun;Kim, Sung-Il;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.994-996
    • /
    • 2003
  • The Response Surface Methodology is frequently used for building an approximation model. However, its approximation errors often occur in engineering problem, because of the use of the Least Square Method. Therefore, this paper introduces the Moving Least Square Method to obtain the more accurate Response Surface Model, and then the detent force of a Permanent Magnet Linear Synchronous Motor is applied to verify the accuracy of the introduced method.

  • PDF

FCM for the Multi-Scale Problems (고속 최소자승 점별계산법을 이용한 멀티 스케일 문제의 해석)

  • 김도완;김용식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.599-603
    • /
    • 2002
  • We propose a new meshfree method to be called the fast moving least square reproducing kernel collocation method(FCM). This methodology is composed of the fast moving least square reproducing kernel(FMLSRK) approximation and the point collocation scheme. Using point collocation makes the meshfree method really come true. In this paper, FCM Is shown to be a good method at least to calculate the numerical solutions governed by second order elliptic partial differential equations with geometric singularity or geometric multi-scales. To treat such problems, we use the concept of variable dilation parameter.

  • PDF

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

Electromagnetic Field Analysis Using the Point Collocation Method Based on the FMLSRK Approximation

  • Kim, Hong-Kyu;Chong, Jin-Kyo;Park, Kyong-Yop;Kim, Do-Wan
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.180-183
    • /
    • 2004
  • This paper presents a description of the point collocation method and its application to the electromagnetic field computation. The interpolation scheme is based on the fast moving least square reproducing kernel approximation. In the method, the integration cell is not required and the essential boundary conditions can be enforced directly. Numerical simulations on 1-D and 2-D problems are carried out to validate the method. It is found that computational efficiency is higher than the general mesh-free methods.

Interface element method (IEM) for a partitioned system with non-matching interfaces (일치하지 않는 경계를 갖는 분리된 시스템을 위한 계면 요소법)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.324-329
    • /
    • 2001
  • A novel method for non-matching interfaces on the boundaries of the finite elements in partitioned domains is presented by introducing interface elements in this paper. The interface element method (IEM) satisfies the continuity conditions exactly through interfaces without recourse to the Lagrange multiplier technique. The moving least square (MLS) approximation in the present study is implemented to construct the shape functions of the interface elements. Alignment of the boundaries of sub-domains in the MLS approximation and integration domains provides a consistent numerical integration due to one form of rational functions in an integration domain. The compatibility of displacements on the boundaries of the finite elements and the interface elements is always preserved in this method, and the completeness of the shape functions of the interface elements guarantees the convergence of numerical solutions. The numerical examples show that the interface element method is a useful tool for the analysis of a partitioned system and for a global-local analysis.

  • PDF

Element free formulation for connecting sub-domains modeled by finite elements

  • Pan, Chan-Ping;Tsai, Hsing-Chih
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.467-480
    • /
    • 2007
  • Two methods were developed for analyzing problems with two adjacent sub-domains modeled by different kinds of elements in finite element method. Each sub-domain can be defined independently without the consideration of equivalent division with common nodes used for the interface. These two methods employ an individual interface to accomplish the compatibility. The MLSA method uses the moving least square approximation which is the basic formulation for Element Free Galerkin Method to formulate the interface. The displacement field assumed by this method does not pass through nodes on the common boundary. Therefore, nodes can be chosen freely for this method. The results show that the MLSA method has better approximation than traditional methods.

Finite 'crack' element method (균열 유한 요소법)

  • Cho, Young-Sam;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.551-556
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor $K_I$ is demonstrated and the crack propagation in a plate is simulated.

  • PDF