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ABSTRACT-The frontal crash optimization of an engine room member using the response surface method was studied.
The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the
front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce
the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response
surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research
the effect of the regression method, two different methodologies were used in constructing the response surface model, the
least square method and the moving least square method. The optimum with the two methods was verified by the
simulation result. The precision of the surrogate model affected the optimal design. The moving least square method
showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-
based design optimization using the response surface method was executed to examine the effect of uncertainties in design
variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic
optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design
optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

KEY WORDS : Crashworthiness, Response surface method (RSM), Moving least square method, Deterministic design
optimization, Reliability based design optimization (RBDO)

1. INTRODUCTION

Studies on vehicle crashworthiness design has been done
for decades. With the increase in the standard in vehicle
safety requirements from government and consumer, the
design for crashworthiness became a major task in the
vehicle development process.

For more safe crash behavior, it is helpful that the front
structure of vehicle absorbs more crash energy in the
initial stage of crash event. The front side member and
the sub-frame are the main components of the vehicle
front structure that absorbs a major portion of the crash
energy in a full-vehicle crash (Gonzalez et al., 2005). So
the geometric shape and the size of these components
greatly affect the crashworthiness of a vehicle.

The geometric shape of the front structure is, however,
restricted by various constraints: engine/transmission mount
position, suspension assembly, and so on. Thus it is a
relatively difficult task to optimize the shape of the struc-
ture. It is easier and more efficient to optimize the thick-
nesses of components to increase the energy absorption.

The front side member and the sub-frame are compos-
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ed of several thin-walled sections which are spot-welded
or arc-welded with each other. In general, as the overall
thickness increases, the energy absorbing increases as
well. But the increase of thicknesses makes the vehicle
heavier, potentially bringing about other disadvantages.
So necessary studies need to be conducted on the design
optimization to improve the energy absorption while
reducing the weight of vehicle.

However, there are some difficulties in performing a
design optimization for the crashworthiness problems due
to the limitations of computational resource and the enor-
mous analysis time consumed. Another issue is related to
the fact that structural optimization often requires gradi-
ents of the objective and constraints to determine a search
direction in optimization procedure. For vehicle crash
problems, the objective and the constraints functions are
often too noisy and it is difficult to find the gradient due
to its severe nonlinearity. Hence, it is critical that a
response surface model (i.e. approximation) be construct-
ed a priori using the results from a number of actual crash
simulations for the crashworthiness optimization.

Many researchers have investigated the problem of
applying the response surface method to crashworthiness
problems. Redhe er al. (2002) studied the method of
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determining the efficient number of experimental points
when using the response surface method in crashworth-
iness problems. Avalle et al. (2002) applied the response
surface method to the optimization of thin-walled column
with circular and rectangular cross-section. Gu et al.
(2005) used the response surface method for. optimally
controlling the crash-pulse. Kim et al. (2005) conducted
optimization of aluminum space frame using the response
surface method.

Once the appropriate response surface model is con-
structed, the optimal design can be obtained by using
various structural optimization methods. However some
problems remain unresolved. There are some uncertain-
ties which exist in real systems and they have not yet
been considered in computer simulation. Even the small
variance of thicknesses, crash angle and the geometric
imperfection in manufacturing process can change the
crash behavior of vehicle dramatically (Qi et al., 2005).
Consequently, obtaining the deterministic optimum designs
without considering these uncertainties can lead to unreli-
able designs. So, in recent times, the reliability-based
design optimization (RBDO) technique is widely used to
address these uncertainties.

Youn et al. (2004) used the reliability-based design
optimization for a vehicle side impact problem with a
response surface method. Riha et al. (2004) studied the
stochastic approach for the vehicle-to-vehicle frontal offset
crash model. Choi e al. (2005) applied the reliability-
based design optimization to the optimization of an
automotive suspension system.

In this paper, the deterministic optimization and the
reliability based design optimization for the front side
member and the sub-frame was conducted to increase the
crash energy absorption and to reduce the vehicle weight.
For the optimization procedure, the response surface
model was constructed using several simulations at
selected sampling points. Two different methods, the
least square method and the moving least square method,
were used to generate the response surface model, and
the results were compared.

2. RESPONSE SURFACE METHODOLOGY

2.1. Sampling Method

One major factor that influences the quality of the
response surface model is the selection of the data points,
or the so-called sampling technique, that is used to create
the surrogate model. The Central Composite Design
(CCD) is the most popular class of second-order designs
(Myers and Montgomery, 1995). This is a composite of
two-level full factorial design with star points located at
the extremes of the region of interest. The CCD has a
disadvantage in that it requires a large number of experi-
ments to be done as the design variable increases. But if

the optimum exists near the edge of design area, CCD
can offer more accurate result than other modern sampl-
ing methods (Barros et al., 2004). The number of sampl-
ing points in CCD is 1+2n+n’ where n is the number of
design variables.

2.2. Least Square Method

The least square method is the most widely used method
to create the surrogate model because it is easy to use.
The least square approximation can be formulated as

NB
§(d)=3 h(d)a=h"(d)a (1)
i=1
where NB is the number of terms in the basis, h is the
monomial basis vector, d is the design parameter.
To compute the coefficient vector a, a residual is
defined as

NS
E(d)=) [8(d)-g(d)] @
i=1
where NS is the number of sample points. The
minimization of the residual £ by dE/da=0 yields the
coefficient a.

2.3. Moving Least Square Method
Since Lancaster and Salkauskas (1986) introduced the
moving least square (MLS) method, it has been success-
fully applied to the mesh-free method (Belytscheko,
1994) and the reliability-based design optimization (Choi
and Youn, 2001).

The moving least square approximation can be formu-
lated as

é(d)=z hi(d)a(d)=h"(d)a(d) 3)

The approximation has the non-constant coefficients
which differ from that of the least square method. The
local approximation in the moving least square method is
given by

NB
2(d,d)=Y h(d)a(d)=h"(d)a(d) )
i=1
where NB is the number of terms in the basis, NS is the
number of sample points, h is the basis vector, d, is the
sample point, and a(d) is the coefticient vector of the
moving least square approximation.
To compute the coefficient vector a(d), a weighted
residual is defined as

NS

E(d)=Y w(d-d)[g(d.d)-g(d)]’

i=1

NS NB :
=Z w(d-d,) z hi(dl)ai(d)—g(dl):’ &)

i=1 i=1
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where w(d —d,) is a weight function with a compact
support which gives a higher weight to the sampling
points closer to the design points. The unknown coeffi-
cients a(d) at any given point are determined by minimi-
zing the weighted residual E by dE/da =0.

An appropriate support size at any point d is selected
so that a sufficient number of neighboring data points is
included to avoid singularity. A variable weight over the
compact support provides local averaging to the response
approximated by the moving least square method.

3. OPTIMIZATION METHODOLOGY

3.1. Deterministic Optimization
The general constrained minimization problem can be
stated as follows

minimize Cost(d)
subject to G(d)<0
i=1»---, NC dL S d S dU s d e RNDV (6)

where Cost(d) is the objective and G(X) is the
constraints; d is the design variables. NC is the number of
constraints; NDV is the number of design variables.

There are several methodologies for solving the pro-
blem: linear programming (LP), sequential linear program-
ming (SLP), and sequential quadratic programming (SQP),
genetic algorithms (GA), and so on. In this study, the
sequential quadratic programming method (Arora, 1989)
was used for optimization.

3.2. Reliability Based Design Optimization
In system parameter design, the RBDO model can gene-
rally be defined as

minimize Cost(d)
subject to P(G(X)<0)-®(-f,)<0
i=1, .., NC
d'<d<d’, de R™ and Xe R™ @)

where NRV is the number of random parameters; d=£(X)
is the design vector; X is the random vector; P(¢) is the
probability that a corresponding event will occur; ® is a
normal cumulative distribution function; ,B,i is the target
reliability value which is used to describe the objective
reliability.

The main difference between the RBDO and the deter-
ministic design optimization lies in probabilistic constraint
evaluation of equation (8).

P(G(X)<0)=Fs(0) S D(-4,)

Fe(0)= |

(G(X)<0)

J'fx(x)dx ®

where Fj, is a cumulative distribution function.

The evaluation of probabilistic constraints requires a
reliability analysis to be carried out and this involves the
multiple-integration of the joint probability density func-
tion f,.

Some approximate probability integration methods have
been developed to provide efficient solutions, such as the
first-order reliability method (FORM) and the asymptotic
second-order reliability method (SORM) (Madsen e? al.,
1986) which has a rotationally invariant measure as the
reliability. FORM often provides adequate accuracy and
is widely used for RBDO applications.

3.2.1. first-order reliability analysis

There are two different approaches in the reliability
evaluation method: the reliability index approach (RIA)
(Enevoldsen and Sorensen, 1994) and the performance
measure approach (PMA) (Tu and Choi, 1999). Between
the two, PMA is more effective and shows robust
characteristics in numerical properties (Choi and Youn,
2001). The PMA procedure is as follows:

For invariant property, the random parameter X is
transformed into standard normal random parameter U
and the performance function G(X) in X-space is mapped
onto G(U) in U-space.

The probabilistic constraint in equation (8) can be
expressed as shown bellow by the inverse transformation.

G,=Fa(®(-4,))20 ©)

The first-order probabilistic performance measure G,
can be obtained from the nonlinear optimization problem
in U-space, defined as

minimize G(U)
subject to |Ul|=24, (10)

where the optimum point on the target reliability surface
is identified as the most probable point (MPP) with a
prescribed reliability target. In iterative optimization pro-
cess, only the direction vector needs to be determined by
exploring the spherical equality constraint.

The numerical procedure of the RBDO process is
described in Figure 1. The box in the right-hand side
represents the reliability analysis procedure which evalu-
ates the probabilistic constraints.

3.2.2. MPP search method
In order to find the minimum value of equation (10),
Youn er al. (2003) proposed the hybrid mean value
(HMV) method which selectively combines the advanced
mean value (AMV) method (Wu et al., 1990) and the
conjugate mean value (CMV) method (Choi and Youn,
2001).

To find the minimum point (i.e., the MPP), the AMV
method iteratively updated the steepest descent direction
vector at the probable point ulyy as
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Figure 1. Flow chart of the reliability based design optimization procedure.

[} (k+1) (k)
Wanv=0 and ujy =,Btn(uAMV

(k)
where n(uafgw)?%fﬂ“;;ﬂ (11)
" UG(“Amv)”

But when G(U) is a concave function, the AMV
method exhibits instability and inefficiency since it only
updates the direction using the current point. So the CMV
method was proposed for the concave function which
combines n(ucyy’), n(uéuy’) and n(u@yy) for the next
steepest descent direction. Like as,

(0} 1) ()] (2) (2)
Ucny=0, Uemv=Uanv, Ucnv=Wany

k-1 2)

ll(ckﬁvl)zﬁ n(u&)’l‘/) + n{ueyy’) + n(ug},}v
k-1 —
||n(u(c";w) +n(udy’) + n(u(C"M\f))”
(k)
© V.,G(u
where n(ung)=__UL_(ckr~)4_v 12
“VUG(UCMV)“

However, the CMV method is inefficient for the convex
function. To overcome this, the HMV method investi-
gates the function type at current point by checking the
sign of the equation (13).

é‘(k+])=(n(k+l)_n(k)) . (n(k)_n(k—l)) (13)

Once the performance function type is identified, either
AMV or CMV is adaptively selected for deciding the
next steepest direction vector.

4. OPTIMIZATION RESULT

4.1. Model Description

The object model of optimization is illustrated in Figure
2. A full-vehicle finite element (FE) model needs enorm-
ous computing power and analysis time. So, in this study,
a part model composed of the front side member, the sub-
frame, and the lower arm was used. The used FE model
consisted of 33430 shell elements and 33335 nodes. The
lumped mass was added to the center of gravity of engine
/transmission and connected to the mount position at the
front side member and the sub-frame. The vehicle weight
was added to the center of gravity of full-vehicle and
connected to the rear parts of the model. In the FE

Figure 2. the object model for optimization.
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(a) top view

(b) side view

Figure 3. Deformed shape at 30ms: (a) top view (b) side
view.

simulation, the model had an initial velocity of 14 m/s
and impacts to rigid wall at full front. This model was
analyzed during 30 ms using an explicit nonlinear finite
element code PAM-CRASH. The deformed shape is
shown in Figure 3.

The total weight of the front side member and sub-
frame of initial model is 23.41 kg and the internal energy
which is the crash energy absorbed by the structure is
8352 ] at 30 ms.

Four thickness values (t;-t,) described in Table 1 were
selected as the design variables in the optimization. The
front side member and the sub-frame are composed of
these four thin-walled panels, and these thicknesses influ-
ence the crash behavior of the vehicle significantly.

To construct the response surface model, a simulation
was conducted at 25 sampling points by the central com-
posite design method. Table 2 shows the thicknesses of
the design variables at each sample point and the internal
energy value at 30 ms obtained by simulation.

4.2, Result of the Deterministic Optimization
The model of deterministic optimization is as follows:

Table 1. Design variables.

Table 2. Simulation results for sample points.

Exp. t, t, t; t, Internal

no. | (mm) (mm) (mm) (mm) | energy (J)
1 1.80 1.80 2.30 2.00 8352
2 1.50 1.50 2.00 1.70 7590
3 2.10 1.50 2.00 1.70 7738
4 1.50 210 2.00 1.70 8499
5 1.50 1.50 2.60 1.70 7812
6 1.50 1.50 2.00 2.30 7770
7 2,10  2.10 2.00 1.70 8604
8 2.10 1.50 2.60 1.70 7972
9 2.10 1.50 2.00 2.30 7913
10 .50  2.10 2.30 1.70 8727
11 .50  2.10 2.00 2.30 8712
12 1.50 1.50 2.60 2.30 7991
13 2.10 210 2.60 1.70 8803
14 2.10 210 2.00 2.30 8778
15 2.10 1.50 2.60 2.30 8135
16 1.50  2.10 2.60 2.30 8930
17 2,10 210 2.60 2.30 8992
18 1.38 1.80 2.30 2.00 8166
19 222 1.80 2.30 2.00 8458
20 1.80 1.38 2.30 2.00 7679
21 1.80 222 2.30 2.00 8893
22 1.80 1.80 1.88 2.00 8199
23 1.80 1.80 2.72 2.00 8505
24 1.80 1.80 2.30 1.58 8223
25 1.80 1.80 2.30 2.42 8473

min weight(f,%,,#5,%)

subject t0 Eperna (£1.72,73,54) 2 Eqrger

0L<L<1ty (14

where weight(z,,5,5,4) is the total weight of front side
member and sub-frame; E... is the objective internal
energy value which is absorbed by the front side member
and sub-frame; ¢, £, is the lower and upper bound of
thickness value.

The objective is to find the optimum thickness set
which weighs the least and absorbs the objective internal

Design variable

Initial value (mm)

Lower bound Upper bound

t, Front side member outer thickness
t, Front side member inner thickness
t;  Sub-frame upper thickness
t,  Sub-frame lower thickness

1.8 1.5 2.1
1.8 1.5 2.1
23 2.0 2.6
20 1.7 23
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energy.

4.2.1. Deterministic optimization result using the least
square method

The deterministic design optimization was performed for
the problem stated in equation (14) using sequential
quadratic programming. The least square method was
used to create the response surface model. Second-order
regression model of equation (15) was constructed using
the sampling data of Table 2.

4 4 3 4
Eintemﬂ(t)=b0+z bit+ Y, b,-,-t?+z > byt (15)
i=1 i=1 i=1 j=i+l
Six different values from 8,400 J to 8,900 J with the
increment of 100 were selected as the objective internal
energy value E,... These values are greater than the
internal energy value of the initial model. The simulation
was conducted with the optimal thicknesses for each case

to verify the mathematical result.

Table 3. Deterministic optimization result using the least
square method.

Mass Internal
B 4 B8 b kg energy )
8400 1.500 2.013 2.000 1.700 21.895 8410
8500 1.500 2.080 2.000 1.700 22.224 8514
8600 1.500 2.100 2.177 1.700 22.688 8573
8700 1.500 2.100 2.441 1.700 23.248 8670
8800 1.750 2.100 2.600 1.700 24.450 8768
8900 2.100 2.100 2.600 1.700 25.638 8803

9000

8900

8800

8700

8600

8500

Internal energy (J)

8400

8300

8400 8500 8600 8700 8800 8900

Objective internal energy

V—Q—Objective \;alaé —-I— sumuatmﬁresult

Figure 4. Simulation result with the design using the least
square method.

The optimal thicknesses about the six objective inter-
nal energy values and the simulation result with each
optimum are listed in Table 3. Figure 3 shows the objec-
tive internal energy value and the internal energy obtain-
ed by the simulation with the optimization result to check
the difference between them.

In the cases where the objective internal energy is less
than 8,800 J, the simulation with the optimal thicknesses
shows approximate result to the objective value as can be
seen in Figure 4. In the case where the objective internal
energy is 8,900 J, on the other hand, the simulation with
the optimization result failed to achieve the objective
internal energy value.

It can be yielded from the results that in some area of
the design' domain (in this case, at the boundary of the
design area), the least square method can not offer
sufficient approximation of the crash behavior. So, there
is a possibility that the optimum with the response
surface model using the least square method may fail to
achieve the objective even though it offers successful
result in some area.

4.2.2. Deterministic optimization result using the moving
least square method

In this section, the response surface model was generated
by the moving least square method. Second-order regre-
ssion model with non-constant coefficients in equation
(16) was constructed using the sampling data provided in
Table 2 and used in the optimization procedure.

E()=bo(t)+ Y. b(t)t+ Y, bii(t)tf+i > byt
i=1 i=1 (16)

Six objective internal energy values which are the
same as values used in the previous section were used in
optimization.

The optimal thicknesses about the six objective internal
energy values and the simulation result for each optimum
are described in Table 4. Figure 4 shows the objective
internal energy value and the internal energy obtained by
the simulation with the optimization result.

i=1 j=ivl

Table 4. Deterministic optimization result using the
moving least square method.

Mass Internal
Foa 0 BB L ) energy ()
8400 1.500 2.011 2.000 1.700 21.883 8379
8500 1.500 2.079 2.000 1.700 22.209 8472
8600 1.500 2.100.2.161 1.702 22.656 8571
8700 1.500 2.100 2.322 1.859 23.265 8681
8800 1.500 2.100 2.500 1.980 23.848 8790
89000 1.500 2.100 2.600 2.214 24.453 8907
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Figure 5. Simulation result with the optimal design using
the moving least square method.

26.0
256
25.0
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24.0
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Figure 6. Weight of the optimal design.

As can be seen in Figure 5, in every case, the simu-
lation result with the optimal thicknesses achieved the
objective internal energy value successfully. The optimi-
zation result using the moving least square method show-
ed less weight than the result by the least square method
in spite of the fact that it absorbed more internal energy.

In Figure 6. The weight of optimized design was com-
pared between the least square method and the moving
least square method.

From the results, we can conclude that the moving
least square method offers a more precise approximation
for the whole design domain and the optimization using
the appropriate response surface model shows a reliable
result in crashworthiness design.

Table 5. Collapse distance of the optimal models.

Collapse distance Collapse distance
Elar et Etar et
B (mm) € (mm)
8400 1214 8600 132.8
8500 134.5 8700 133.5
8600 132.3 8800 134.0

(a)

()

Figure 7. Deformed shape at 30 ms : (a) the initial model
(b) the optimal model with the objective internal energy
value of 8,700].

By the optimization, the weight of vehicle can be
reduced by about 1.5 kg in comparison with the initial
model for the same internal energy absorption. And the
internal energy can be increased by about 350 J if we use
the same weight as the initial model.

Figure 7 shows the collapse mode of the initial model
and the optimal model with the objective internal energy
value of 8,700 J. The optimal model induced more axial
collapse of the front side member than the initial model.
The collapse distances of optimal models were listed in
Table 5. The collapse distance was measured for front
300 mm length of the front side member. The collapse
distance of the initial model is 120 mm.

Compared with the initial model, the optimal model
showed larger value of collapse distance in every case.

4.3. Result of the Reliability Based Design Optimization
In this section, RBDO was executed considering the
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uncertainty of the thickness.
The model of RBDO is as follows.

min weight(t,,5,23,24)
subject to P(Eiema (t1,12:83,84) 2 Eger) 2 P,
n<n<ty (15)

where P(Eiema(t1,82-83,84) 2 Eorger) 18 the possibility that
the internal energy absorption is greater than the objec-
tive internal energy value, and P, is the target reliability
value.

The same objective internal energy values of the previ-
ous section were used in RBDO as well. The four thick-
ness variables were assumed to be the random variables
with a deviation of 0.02. The normal distribution was
assumed. RBDO was conducted for three increasing
target reliabilities, P=90%, 99% and 99.865%. Because
the moving least square method showed better perfor-

Table 6. RBDO result with three target reliabilities.
(a) Target reliability of 90%

mass internal

Erget t, t, t3 ty (kg) energy (J)

8400 1.500 2.038 2.000 1.700 22.013 8413

8500 1.500 2.100 2.019 1.701 22.353 8506
8600 1.500 2.100 2.230 1.755 22.894 8617
8700 1.500 2.100 2.414 1.865 23470 8717

8800 1.500 2.100 2.565 2.039 24.084 8830
8900 1.569 2.100 2.600 2.300 24.832 8945

(b) Target reliability of 99%

mass internal

Bow 4 &6 N ) energy O)

8400 1.500 2.060 2.000 1.700 22.120 8438
8500 1.500 2.100 2.097 1.700 22.517 8537
8600 1.500 2.100 2.290 1.794 23.086 8650
8700 1.500 2.100 2.456 1.941 23.689 8756
8800 1.500 2.100 2.594 2.123 24.287 8871
8900 1.789 2.100 2.600 2.300 25.589 8978

(¢) Target reliability of 99.865%

mass internal

Elargel tl tZ t3 t4 (kg) energy (J)

8400 1.500 2.074 2.000 1.700 22.188 8465
8500 1.500 2.100 2.146 1.700 22.622 8559
8600 1.500 2.100 2.326 1.823 23.213 8671
8700 1.500 2.100 2.493 1.967 23.811 8784
8800 1.500 2.100 2.599 2.192 24414 8899
8900 1.978 2.100 2.600 2.300 26.231 8981

9000

8900

8800

8700

8600

8500

Internal energy (J)

8400

8300

8400 8500 8600 8700 8800 8800

Objective internal energy

—— dete-rmin. 0|:;t i
—&— RBDO 99%

RBDO 90%
—=—RBDO 99.865%

Figure 8. Simulation results of optimal designs of the
deterministic optimization and RBDO.

mance as mentioned in the previous section, the response
surface model was constructed by the moving least
square method by using the data of Table 2.

The PMA method was applied to evaluate the probabi-
listic constraint in reliability analysis, and the HMV
method was used for MPP search method.

The results of RBDO in Table 6 show larger values in
internal energy absorption than those of the deterministic
optimization. As the target reliability increases, the optimal
design absorbs more internal energy. Figure 8 shows the
internal energy values obtained by the four optimal
designs: the deterministic optimization, RBDO with 90%
reliability, RBDO with 99% reliability and RBDO with
99.865% reliability.

From the point of view of vehicle weight, however,
RBDO demands comparatively larger weight due to the
requirement of reliability. Figure 9 shows the weight of
the optimal designs. It can be seen that the weight of the
structure increases as the high reliability value is adopted
in optimization.

Even in the most severe level of reliability, neverthe-
less, the optimal design in RBDO shows better perfor-
mance than the initial design. The weight can be reduced
by about 1.2 kg in comparison with the initial model for
the same internal energy absorption. Other relatives the
internal energy can be increased by about 300 J in using
the same weight as the initial model.

In Figure 10, the three designs for the objective internal
energy 8,700 J: the result of deterministic optimization,
the result of RBDO with 90% target reliability, the result
of RBDO with 99.865% target reliability, were compared
in their cumulative probability distribution. The result of
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Figure 9. Weights of the optimal designs of the determini-
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Figure 10. Cumulative probability distribution of the
deterministic optimization and RBDO.

deterministic optimization was assumed to have the same
deviation as that of RBDO.

It is noted that the probability of failure, that the design
absorbs internal energy less than 8,700 J, is high in deter-
ministic optimization result. And the probability of the
failure decreases as the target reliability in RBDO increases.
Consequently, RBDO gives a reliable optimal design even
though it has some disadvantages in performance.

5. CONCLUSION

In this paper, the size optimization for the thicknesses of
the engine room member was conducted to improve the
capability of the crash energy absorption while keeping
the weight of structure at the minimum. The response
surface method was used for making a surrogate model
of the vehicle crash behavior. The precision of the surro-
gate model affected the quality of the optimization result.
Between the two methods used in this study, the moving
least square method offered the better approximation than
the least square method for the whole design domain. The
optimal designs obtained by the moving least square
method achieved the objective successfully. From the
results, we were able to conclude that the response surface
method is an efficient tool for resolving crashworthiness
optimization problems if the appropriate regression method
is adopted.

In addition to the deterministic optimization, the reli-
ability based design optimization was executed in this
study. The uncertainty of the thickness value was consi-
dered in RBDO. The result of the deterministic optimi-
zation showed better performance in reducing the vehicle
weight. But the optimum from deterministic optimization
showed a relatively higher probability of failure in achiev-
ing the objective energy absorption. As the target reliabi-
lity level increased, the result of RBDO offered higher
values in internal energy absorbing and showed lesser
probability in failure. On the other hand, the high target
reliability increased the weight of vehicle. Therefore, an
appropriate target reliability level for each of the problem
should be decided by the designer in RBDO optimization
to ensure that an efficient and economical design is
achieved.
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