• Title/Summary/Keyword: Metal Electrodeposition

Search Result 90, Processing Time 0.028 seconds

Electrodeposition Characteristics of Corrosion Resistant Tantalum Coating Layer for Hydrogen Production Sulfide-Iodine Process (수소생산을 위한 Sulfide-Iodine 공정장치용 초내식 탄탈코팅층 전착특성)

  • Lee, Youngjun;Kim, Daeyoung;Han, Moonhee;Kang, Keangsoo;Bae, Gigwang;Lee, Jonghyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.573-580
    • /
    • 2012
  • Corrosion resistance and basic physical properties of solid tantalum are not comparable to most of the structural metallic materials. The relative high cost and melting temperature of tantalum are obstacles to be widely applied to general engineering processes. Electrodeposition in molten salt enables compact and uniform tantalum coating. In this study, Ta was coated onto base metal (SUS316L) with different current densities (0.5, 5, $20mA/cm^2$) by using MSE (Molten Salt Electrodeposition). In this study, it showed that deposition efficiency and microstructure of Ta coating layer were strongly depended on current density. In the case of the current density of $5mA/cm^2$, densest microstructure was obtained. The current density above $5mA/cm^2$ caused non-uniform microstructure due to rapid deposition rate. Dense microstructure and intact coating layer contributed to significant corrosion resistance enhancement.

Metal nano-wire fabrication and properties (금속 나노와이어의 제조와 특성)

  • Hamrakulov, B.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.432-434
    • /
    • 2009
  • Metal nano-wire arrays on Cu-coated seed layers were fabricated by aqueous solution method using sulfate bath at room temperature. The seed layers were coated on Anodic aluminum oxide (AAO) bottom substrates by electrochemical deposition technique, length and diameter of metal nano-wires were dominated by controlling the deposition parameters, such as deposition potential and time, electrolyte temperature. Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni, Fe, Co and Cu multilayer magnetic nano-wire arrays. This template was fabricated with two-step anodizing method, using dissimilar solutions for Al anodizing. The pore of anodic aluminum oxide templates were perfectly hexagonal arranged pore domains. The ordered Ni, Fe, Co and Cu systems nano-wire arrays were characterized by Field Emission Scanning Electron Microscopy (FE-SEM) and Vibrating Sample Magnetometer (VSM). The ordered Ni, Fe, Co and Cu systems nano-wires had different preferred orientation. In addition, these nano-wires showed different magnetization properties under the electrodepositing conditions.

  • PDF

The Effect of Composition and Current Condition on Magnetic Properties of Co-Fe-Ni Soft Magnetic Alloy (합금 조성과 전류조건이 CoFeNi 3원계 합금의 자기특성에 미치는 영향)

  • Jeung, Won-Young;Kim, Hyun-Kyung;Lee, Jeong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.241-245
    • /
    • 2005
  • CoFeNi alloys are some of the most studied soft magnetic materials because of their applications as write-head core materials in HDD and MEMS. Ternary CoFeNi films with high saturation magnetic flux density, Bs and low coercivity, He were successfully grown by electrodeposition. The optimal composition was $Co_{30}\;Fe_{34}\;Ni_{36}(at\%)$, and Bs and Hc were 1.9 T and 0.16 A/m, respectively. The XRD and TEM results show that the low Hc of the CoFeNi films was due to very fine crystal particles and mixed fcc and bcc phases.

Nanostructured Ni-Mn double hydroxide for high capacitance supercapacitor application

  • Pujari, Rahul B.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2021
  • Recently, transition-metal-based hydroxide materials have attracted significant attention in various electrochemical applications owing to their low cost, high stability, and versatility in composition and morphology. Among these applications, transition-metal-based hydroxides have exhibited significant potential in supercapacitors owing to their multiple redox states that can considerably enhance the supercapacitance performance. In this study, nanostructured Ni-Mn double hydroxide is directly grown on a conductive substrate using an electrodeposition method. Ni-Mn double hydroxide exhibits excellent electrochemical charge-storage properties in a 1 M KOH electrolyte, such as a specific capacitance of 1364 Fg-1 at a current density of 1 mAcm-2 and a capacitance retention of 94% over 3000 charge-discharge cycles at a current density of 10 mAcm-2. The present work demonstrates a scalable, time-saving, and cost-effective approach for the preparation of Ni-Mn double hydroxide with potential application in high-charge-storage kinetics, which can also be extended for other transition-metal-based double hydroxides.

Electrochemical Fabrication of CdS/CO Nanowrite Arrays in Porous Aluminum Oxide Templates

  • Yoon, Cheon-Ho;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1519-1523
    • /
    • 2002
  • A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

Cu Metallization for Giga Level Devices Using Electrodeposition (전해 도금을 이용한 기가급 소자용 구리배선 공정)

  • Kim, Soo-Kil;Kang, Min-Cheol;Koo, Hyo-Chol;Cho, Sung-Ki;Kim, Jae-Jeong;Yeo, Jong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.94-103
    • /
    • 2007
  • The transition of interconnection metal from aluminum alloy to copper has been introduced to meet the requirements of high speed, ultra-large scale integration, and high reliability of the semiconductor device. Since copper, which has low electrical resistivity and high resistance to degradation, has different electrical and material characteristics compared to aluminum alloy, new related materials and processes are needed to successfully fabricate the copper interconnection. In this review, some important factors of multilevel copper damascene process have been surveyed such as diffusion barrier, seed layer, organic additives for bottom-up electro/electroless deposition, chemical mechanical polishing, and capping layer to introduce the related issues and recent research trends on them.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성)

  • AN, DA-SOL;BAE, KI-KWANG;PARK, CHU-SIK;KIM, CHANG-HEE;KANG, KOUNG-SOO;CHO, WON-CHUL;CHO, HYUN-SEOK;KIM, YOUNG-HO;JEONG, SEONG-UK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.

Mechanism of Tungsten Recovery from Spent Cemented Carbide by Molten Salt Electrodeposition

  • Hongxuan Xing;Zhen Li;Enrui Feng;Xiaomin Wang;Hongguang Kang;Yiyong Wang;Hui Jin;Jidong Li
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2023
  • The accumulation of spent carbide (YG8), not only pollutes the environment but also causes waste of tungsten, cobalt and other rare metal resources. To better address this issue, we proposed a combined electrochemical separation process of low-temperature aqueous solution and high-temperature molten salt for tungsten and cobalt. H2WO4 was obtained from spent carbide in an aqueous solution, and we calcined it to obtain WO3, which was used as a raw material to obtain tungsten by using molten salt electrodeposition. The influence of the current efficiency and the electrochemical behavior of the discharge precipitation of W(VI) were also studied. The calcination results showed that the morphology of WO3 was regular and there were no other impurities. The maximum current efficiency of 82.91% was achieved in a series of electrodeposition experiments. According to XRD and SEM analysis, the recovered product was high purity tungsten, which belongs to the simple cubic crystal system. In the W(VI) reduction mechanism experiments, the electrochemical process of W(VI) in NaCl-Na2WO4-WO3 molten salt was investigated using linear scanning voltammetry (LSV) and chronoamperometry in a three-electrode system. The LSV showed that W(VI) was reduced at the cathode in two steps and the electrode reaction was controlled by diffusion. The fitting results of chronoamperometry showed that the nucleation mechanism of W(VI) was an instantaneous nucleation mode, and the diffusion coefficient was 7.379×10-10 cm2·s-1.

The effect of polyethypeneglycol on the electrocrystallization of Zn electrodeposition (아연 전기도금의 전착성에 미치는 폴리에틸렌글리콜(polyethyleneglycol)의 영향)

  • 김현태;김태엽;이재륭;장삼규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.590-596
    • /
    • 1999
  • The effects of additives on the Zn electrodeposition in chloride-based electrolyte were investigated using circulation cell with three electrodes system. The cathodic polarization increased with the addition of polyethylenglycol (hereafter PEG) in electrolyte. This was attributed to the adsorption of the additives on the electrode and the inhibition of migration of metal ion. The PEG, however, did not have any noticeable effect on the properties of plating solutions at the concentration used. The effect of PEG on the electrocrystallization was related to its molecular weight. With the increase of molecular weight, the cathodic polarization increased, while the surface roughness was improved with the decrease of brightness. Especially, the PEG mixed with different molecular weights was the most effective. The orientation and the type of the deposited grains were changed and refined by PEG, which resulted in the modification of deposited surface roughness and brightness.

  • PDF