DOI QR코드

DOI QR Code

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Kang, Chan (Department of Chemistry, Research Institute of Physics and Chemistry, Chonbuk National University)
  • 투고 : 2010.07.28
  • 심사 : 2010.09.03
  • 발행 : 2010.11.20

초록

The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

키워드

참고문헌

  1. Barton, S. C.; Kim, H.-H.; Binyamin, G.; Zhang, Y.; Heller, A. J. Am. Chem. Soc. 2001, 123, 580.
  2. Barton, S. C.; Kim, H.-H.; Binyamin, G.; Zhang, Y.; Heller, A. J. Phys. Chem. B 2001, 105, 11917. https://doi.org/10.1021/jp012488b
  3. Mano, N.; Kim, H.-H.; Zhang, Y.; Heller, A. J. Am. Chem. Soc. 2002, 124, 6480. https://doi.org/10.1021/ja025874v
  4. Mano, N.; Kim, H.-H.; Heller, A. J. Phys. Chem. B 2002, 106, 8842. https://doi.org/10.1021/jp025955d
  5. Heller, A. J. Phys. Chem. 1992, 96, 3579. https://doi.org/10.1021/j100188a007
  6. Ohara, T. J.; Rajagopalan, R.; Heller, A. Anal. Chem. 1993, 65, 3512. https://doi.org/10.1021/ac00071a031
  7. Mano, N.; Fernandez, J. L.; Kim, Y.; Shin, W.; Bard, A. J.; Heller, A. J. Am. Chem. Soc. 2003, 125, 15290. https://doi.org/10.1021/ja038285d
  8. Heller, A. Curr. Op. in Chem. Biol. 2006, 10, 1. https://doi.org/10.1016/j.cbpa.2006.01.015
  9. Gao, Z.; Binyamin, G.; Kim, H.-H.; Barton, S. C.; Zhang, Y.; Heller, A. Angew. Chem. Int. Ed. 2002, 41, 810. https://doi.org/10.1002/1521-3773(20020301)41:5<810::AID-ANIE810>3.0.CO;2-I
  10. Shin, H.; Cho, S.; Heller, A.; Kang, C. J. Electrochem. Soc. 2009, 156(6), F87. https://doi.org/10.1149/1.3098481
  11. Maerke, G.; Case, F. H. J. Am. Chem. Soc. 1958, 80, 2745. https://doi.org/10.1021/ja01544a042
  12. Kenausis, G.; Taylor, C.; Katakis, I.; Heller, A. J. Chem. Soc. Faraday Trans. 1996, 92, 4131. https://doi.org/10.1039/ft9969204131
  13. Anderson, S.; Constable, E. C.; Seddon, K. R.; Turp, J. E.; Baggolt, J. E.; Pilling, M. S. J. Chem. Soc. Dalton. Trans. 1985, 2247.
  14. Ohara, T. J.; Rajagopalan, R.; Heller, A. Anal. Chem. 1994, 66, 2451. https://doi.org/10.1021/ac00087a008
  15. Forster, R. S.; Vos, J. G. Macromolecules 1990, 23, 4372. https://doi.org/10.1021/ma00222a008
  16. Henrichs, P. M.; Whitlock, L. R.; Sochor, A. R.; Tan, J. S. Macromolecules 1980, 13, 1375. https://doi.org/10.1021/ma60078a009
  17. Kim, H.-H.; Mano, N.; Zhang, Y.; Heller, A. J. Electrochem. Soc. 2003, 150, A209. https://doi.org/10.1149/1.1534095
  18. Aoki, A.; Rajagopalan, R.; Heller, A. J. Phys. Chem. 1995, 99, 5102. https://doi.org/10.1021/j100014a034
  19. Keane, L.; Hogan, C.; Forster, R. J. Langmuir 2002, 18, 4826. https://doi.org/10.1021/la010927s
  20. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, 2001.
  21. Mao, F.; Mano, N.; Heller, A. J. Am. Chem. Soc. 2003, 125, 4951. https://doi.org/10.1021/ja029510e
  22. Harris, D. C. Quantitative Chemical Analysis, 7th ed.; Freeman: New York, 2007; AP 13.
  23. Bandyopadhyay, S.; Mukherjee, G. N.; Drew, M. G. B. Inorg. Chim. Acta 2006, 359, 3243. https://doi.org/10.1016/j.ica.2006.03.031
  24. Begum, M. S. A.; Saha, S.; Nethaji, M.; Chakravarty, A. R. J. Inorg. Biochem. 2010, 104, 477. https://doi.org/10.1016/j.jinorgbio.2010.01.001

피인용 문헌

  1. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment vol.405, pp.11, 2013, https://doi.org/10.1007/s00216-013-6709-4
  2. Reduction in Enzymatic Biofuel Cells pp.1520-6890, 2017, https://doi.org/10.1021/acs.chemrev.7b00220
  3. Comparison of Direct and Mediated Electron Transfer for Bilirubin Oxidase from Myrothecium Verrucaria. Effects of Inhibitors and Temperature on the Oxygen Reduction Reaction vol.9, pp.12, 2019, https://doi.org/10.3390/catal9121056