• Title/Summary/Keyword: Electrodeposition

Search Result 548, Processing Time 0.025 seconds

Recent Advances in Electrodeposition Technology (전해 석출 기술의 최근 개발 동향)

  • Kim, S.K.;Reddy, R.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.553-567
    • /
    • 2001
  • Electrodeposition technology is widely used in industry for various kinds of coatings. Modifications in this technology led to several processes to meet various requirements. Electrolysis in ionic liquids has many advantages such as low energy consumption of energy, low pollutant emission and low operating costs. Although ionic liquids have already been used in liquid/liquid extraction processes, only recently their use in electrodeposition was exploited. Electrochemical deposition of composites is an expanding area. Coupled with the progress in the synthesis of nanometric powder, this research will open a large number of innovative materials. Pulse current plating is another electrodeposition technique which yields improved coatings. Although electrodeposition is now regarded as an environmental non-friendly process, it is economically viable and has many inherent advantages. For certain applications, alternatives to electrodeposition have not yet been fully implemented. Hence, continued research in this technology is warranted. This article reviews some recent advances in electrodeposition technology. Aspects of electrodeposition such as electrolysis in ionic liquids, electrodeposition of composites, pulse current plating techniques, metal and alloy deposition, compound deposition and effects of additives are discussed in this review.

  • PDF

Improvement of Reproducibility in Selective Electrodeposition Using Laser Masking and DC Voltage (레이저 마스킹과 직류전원을 이용한 선택적 전해도금의 재현성 개선)

  • Shin, Hong Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • A method is proposed for the improvement of deposition reproducibility in the selective electrodeposition process using laser masking and DC voltage. Selective electrodeposition using laser masking and DC voltage can achieve a deposited layer with micro patterns. However, selective electrodeposition using laser masking and DC voltage have a critical problem: the lack of reproducibility in selective deposition. The reproducibility of selective electrodeposition can be improved by a new process that consists of laser masking, two-step electro-deposition, laser scribing, and ultrasonic cleaning. The experiments in this study show that the reproducibility of selective deposition can be successfully improved by the combination of two-step electrodeposition and laser scribing.

Selective Electrodeposition Using Laser Masking and DC Voltage (레이저 마스킹과 직류전원을 이용한 선택적 전해도금)

  • Shin, Hong Shik;Kim, Sung Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 2015
  • This paper proposes a selective electrodeposition process that uses laser masking and a DC voltage. Selective electrodeposition using laser masking and a DC voltage is more efficient than that using laser masking and a pulse voltage. In other words, electrodeposition with a DC voltage allows for precise selective deposition without the limitation of the deposition region. Also, a selective electrodeposition method that uses laser masking and DC voltage can reduce the electrodeposition time. The characteristics of a copper layer deposited by laser masking and DC voltage were examined under various conditions. A selective copper layer with various micro patterns of $2{\mu}m$ thickness was successfully fabricated.

Pulse Electrodeposition of Polycrystalline Si Film in Molten CaCl2 Containing SiO2 Nanoparticles

  • Taeho Lim;Yeosol Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2023
  • The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO2. In this study, we present the pulse electrodeposition of Si in molten CaCl2 containing SiO2 nanoparticles. Theoretically, SiO2 nanoparticles with a diameter of less than 20 nm in molten CaCl2 at 850℃ have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl2. This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl2 containing SiO2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.

Analysis of Initial Stage of Copper Electrodeposition for Fine Pattern (미세패턴용 구리도금시 초기 전착 거동 해석)

  • 조차제;최창희;김상겸;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.164-168
    • /
    • 2003
  • The initial stage of copper electrodeposition has been known to be very important role for morphology and physical properties after final growth. The factors affecting the nucleation are electrode, current density, electrolyte and temperature. Current studies has illuminated the initial nucleation of copper electrodeposition in the viewpoint of the surface status of electrode and analyzed using EIS and SEM observation

The Effect of Grain Refiner on Ni-Fe-P Alloy Electrodeposition (Ni-Fe-P 합금전착에 미치는 Grain Refiner의 영향)

  • 서무홍;김동진;김정수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.437-443
    • /
    • 2003
  • The effects of additive(grain refiner, GR) on process efficiency of the Ni-Fe-P alloy electrodeposition and the material properties of the deposit were investigated. Electrochemical properties of the deposits were investigated using polarization and electrochemical impedance techniques, and the material properties of the deposits were characterized through inductively coupled plasma(ICP), spiral contractometer, XRD, SEM and TEM. When the additive was added into the electrodeposition bath, current efficiency, Ni content and corrosion resistance of the deposit increased, whereas residual stress, surface roughness and grain size of the deposit decreased.

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition

  • Song, You-Jung;Han, Sang-Beom;Lee, Hyun-Hwi;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.

Effect of Solution Compositions on Properties of Ni-Fe Nano Thin Film and Wire Made by Electrodeposition Method (Electrodeposition법으로 제조한 Ni-Fe 나노박막 및 나노선의 특성에 미치는 용액 조성의 영향)

  • Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.243-247
    • /
    • 2010
  • The micro Vickers hardness and internal stress of Ni-Fe metal thin film synthesized by electrodeposition method at $25^{\circ}C$ were studied as a function of bath composition, and surface microstructure and atomic compositions of thin films were investigated by SEM and EDS. And the shape change of $200\;{\AA}$ Ni-Fe nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method were observed by SEM as a function of ultrasonic treatment time and bath composition. The Fe deposition contents on the substrate non-linearly increased with Fe ion concentration over total metal ion concentration. In case of low Fe contents film, the grain size is smaller and denser than high Fe contents deposited films, and the micro Vickers hardness increased with Fe contents of electrodeposited films. These results affected the shape change of nanowire after ultrasonic treatments.

Fabrication and Properties of Fe-Ni Nano Thin Film and Wire by Electrodeposition Method (Electrodeposition법에 의한 Fe-Ni 나노박막 및 나노선 제조 및 특성)

  • Koo, Bon-Keup;Shin, Dong-Yul;Jung, Woo-Ram;Jung, Sang-Ok;Kim, Dae-Yong;Choi, Mok-Ryeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.557-558
    • /
    • 2006
  • The mechanical properties of micro-hardness and internal stress of Ni-Fe alloy thin film made by electrodeposition method have been measured as a function of bath composition and current density. And also the microstructure of $200{\AA}$ Ni-Fi nanowires made using anodic aluminum oxide(AAO) templates by electrodeposition method have been observed by SEM as a function of ultrasonic treatment time and bath composition.

  • PDF

Relation between Magnetic Properties and Surface Morphology of Co-Base Alloy Film by Electrodeposition Method (전착법을 이용한 Co계 합금박막의 표면형태와 자기특성과의 관계)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.624-630
    • /
    • 2017
  • In this study, we investigated the overpotential of precipitation related to the catalytic activity of electrodes on the initial process of electrodeposition of Co and Co-Ni alloys on polycrystalline Cu substrates. In the case of Co electrodeposition, the surface morphology and the magnetic property change depending on the film thickness, and the relationship with the electrode potential fluctuation was shown. Initially, the deposition potential(-170 mV) of the Cu electrode as a substrate was shown, the electrode potential($E_{dep}$) at the $T_{on}$ of electrodeposition and the deposition potential(-600 mV) of the surface of the electrodeposited Co film after $T_{off}$ and when the pulse current was completed were shown. No significant change in the electrode potential value was observed when the pulse current was energized. However, in a range of number of pulses up to 5, there was a small fluctuation in the values of $E_{dep}$ and $E_{imm}$. In addition, in the Co-Ni alloy electrodeposition, the deposition potential(-280 mV) of the Cu electrode as the substrate exhibited the deposition potential(-615 mV) of the electrodeposited Co-Ni alloy after pulsed current application, the $E_{dep}$ of electrodeposition at the $T_{on}$ of each pulse and the $E_{imm}$ at the $T_{off}$ varied greatly each time the pulse current was applied. From 20 % to less than 90 % of the Co content of the thin film was continuously changed, and the value was constant at a pulse number of 100 or more. In any case, it was found that the shape of the substrate had a great influence.