DOI QR코드

DOI QR Code

The Effect of Composition and Current Condition on Magnetic Properties of Co-Fe-Ni Soft Magnetic Alloy

합금 조성과 전류조건이 CoFeNi 3원계 합금의 자기특성에 미치는 영향

  • Jeung, Won-Young (Metal Processing Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hyun-Kyung (Metal Processing Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jeong-Oh (Metal Processing Research Center, Korea Institute of Science and Technology)
  • 정원용 (한국과학기술연구원 금속공정 연구센터) ;
  • 김현경 (한국과학기술연구원 금속공정 연구센터) ;
  • 이정오 (한국과학기술연구원 금속공정 연구센터)
  • Published : 2005.08.01

Abstract

CoFeNi alloys are some of the most studied soft magnetic materials because of their applications as write-head core materials in HDD and MEMS. Ternary CoFeNi films with high saturation magnetic flux density, Bs and low coercivity, He were successfully grown by electrodeposition. The optimal composition was $Co_{30}\;Fe_{34}\;Ni_{36}(at\%)$, and Bs and Hc were 1.9 T and 0.16 A/m, respectively. The XRD and TEM results show that the low Hc of the CoFeNi films was due to very fine crystal particles and mixed fcc and bcc phases.

CoFeNi 합금은 HDD, MEMS 분야에서 head core 재료로 쓰이는 permalloy(FeNi)합금보다 뛰어난 우수한 자기적 특성을 가진 재료로써 최근 많이 연구되어지고 있다. CoFeNi 합금의 조성과 전기도금 시 전류조건에 따른 미세구조와 결정학적 특성이 자기 특성에 미치는 영향을 조사하였으며, 높은 포화자화와 낮은 보자력을 갖는 CoFeNi 삼원계 합금을 전기도금 방식으로 제조하는데 성공하였다. 포화자화 1.9 T, 보자력 0.16 A/m를 갖는 대표적인 CoFeNi film의 조성은 $Co_{30}\;Fe_{34}\;Ni_{36}(at\%)$이며, 미세결정립과 ffc-bcc 상의 혼재가 낮은 보자력을 갖는 요인임을 XRD, TEM의 결과로부터 확인 하였다.

Keywords

References

  1. Y. Zhang and D. G. Ivey. Chem Mater., 16, 1189(2004) https://doi.org/10.1021/cm035306u
  2. H.-S. Nam, T. Yokosima, T. Nakanish, T. Osaka, Y. Yamazaki, and D. N. Lee. ELSEVIER, Thin Solid Film, 384, 288(2001)
  3. S. Pinitsoontorn, G. A. Badini Confalonieri, H. A. Davies, and M. R. J. Gibbs. Journal of Magnetism and Magnetic Materials, 290-291, 1528(2005) https://doi.org/10.1016/j.jmmm.2004.11.211
  4. T. Osaka. PERGAMON, Electrochemica Acta, 45, 3311(2000) https://doi.org/10.1016/S0013-4686(00)00407-2
  5. T. Osaka, M. Takai, K. Hayashi, K. Ohashi, M. Saito, and K. Yamada. Letters to Nature, 392, (1998)
  6. D. Kim, D.-Y. Park, B. Y. Yoo, P. T. A. Sumodjo, and N. V. Myung. Electrochimica Acta, 48, 819(2003) https://doi.org/10.1016/S0013-4686(02)00773-9
  7. L. Perez, K. Attenborough, J. De Boeck, J. P. Celis, C. Aroca, P. Sanchez, E. Lopez, and M. C. Sanches. ELSEVIER. Journal of Magnetsm and Magnetic Materials, 242-245, 163(2002) https://doi.org/10.1016/S0304-8853(01)01190-8
  8. Y. Sverdlov, Y. Rosenberg, Yu. I. Rozenberg, R. Zmood, R. Erlich, S. Natan, and Y. Shacham-Diamand. ELSEVIER, Microelectronic Engineering, 76, 258(2004) https://doi.org/10.1016/j.mee.2004.07.039
  9. E. H. du Marchie van Voorthuysen, F. Tten Broek, N. G. Chechenin, and D. O. Boerma. ELSEVIER, Journal of Magnetsm and Magnetic Materials, 266, 251 (2003) https://doi.org/10.1016/S0304-8853(03)00141-0

Cited by

  1. Operating Field Optimization of Giant Magneto Impedance (GMI) Devices in Micro Scale for Magnetic Bead Detection vol.44, pp.11, 2008, https://doi.org/10.1109/TMAG.2008.2002611