• Title/Summary/Keyword: soft magnetic material

Search Result 131, Processing Time 0.039 seconds

Recent Advances in Soft Magnetic Actuators and Sensors using Magnetic Particles (자성 분말 기반 소프트 자성 액츄에이터 및 센서 연구 동향)

  • Song, Hyeonseo;Lee, Hajun;Kim, Junghyo;Kim, Jiyun
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.509-517
    • /
    • 2021
  • Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.

Analysis of Radiation Shielding Effect of Soft Magnetic Material applied to Military Facility (경량 연자성 소재의 군 시설물 적용 시 방사선 차폐효과 분석)

  • Lee, Sangkyu;Lee, Sangmin;Choi, Gyoungjun;Lee, Byounghwak
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • The purpose of this research is to analyze the radiation shielding effect of soft magnetic material to confirm the applicability to the military facilities. The soft magnetic material is known to be effective in shielding EMP. If this material is also effective in radiation shielding, it is expected that it has a lot of applicability in military protection. In particular, this material contains boron, so it will be effective in shielding neutrons. In this research, experiments were conducted using Cs-137 and Co-60 sources to check the gamma ray shielding effect. In addition, the Monte Carlo N-Particle(MCNP) modeling was applied to evaluate the gamma ray and neutron shielding effect of a military command tent. As a result, as the soft magnetic thickness increased, the shielding performance improved according the linear attenuation law of gamma ray and neutron. Therefore, this research verified that the application of soft magnetic material for military purposes in radiation shielding would be effective.

Ultra-Soft Magnetic Properties in Nanocrystalline $Fe_81B_11Nb_7Cu_1$Alloy

  • Lee, Heebok;Lee, Kyeong-Jae;Kim, Yong-Kook;Yoon, Sung-Ho;Kim, Taik-Kee;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.102-105
    • /
    • 2000
  • The extremely soft magnetic behaviors in the nanocrystalline $Fe_81B_11Nb_7Cu_1$ alloy annealed at 450 $\circ C$ and 550 $\circ C$ for 1 hour in a vacuum were investigated by means of the magnetoimpedance (MI) effect and the incremental permeability. Because the MI effect can be obtained only in ultra-soft magnetic materials, the improvement of magnetic softness by proper thermal treatment was carefully monitored by the MI effect for all annealed samples. The changes of the incremental permeability as a function of an external field were also measured to verify the magnetic softness along with the MI measurement.

  • PDF

Ultra-Soft Magnetic Properties in Nanocrystalline $Fe_{81}B_{11}Nb_7Cu_1$ Alloy

  • Lee, Heebok;Lee, Kyeong-Jae;Kim, Yong-Kook;Yoon, Sung-Ho;Kim, Taik-Kee;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.466-472
    • /
    • 2000
  • The extremely soft magnetic behaviors in the nanocrystalline Fe$_{81}$B$_{11}$Nb$_{7}$Cu$_{1}$ alloy annealed at 450 $^{\circ}C$ and 550 $^{\circ}C$ for 1 hour respectively in a vacuum were obtained, and examined by means of the magnetoimpedance(MI) effect and the incremental permeability. Because the MI effect can be obtained only in ultra-soft magnetic materials, the improvement of magnetic softness by proper thermal treatment was carefully monitored by the MI effect for all annealed samples. The changes of the incremental permeability as a function of an external field were also measured to verify the magnetic softness along with the MI measurement.ent.

  • PDF

The present technical condition and a trend of research for soft magnetic materials (연자성재료의 기술현황과 연구동향)

  • 양계준;박용관
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.76-92
    • /
    • 1996
  • 본 고에서는 대표적인 연자성재료인 Soft 페라이트, 퍼멀로이, 센더스트와 비정질 자성합금계의 특성과 용도를 살펴봄으로써 현재의 기술현황을 알아보고 그 문제점 해결과 특성개선을 위한 연구동향에 대하여 검토하여 보기로 한다. 또한 연자성재료 일반에 걸쳐 용도별 분류와 각 응용기술 분야에서의 기술동향 및 전망에 대하여 소개하고자 한다.

  • PDF

Microstructure and Magnetic Properties in Fe-Co-B/M Films for Soft Magnetic Underlayer of Perpendicular Magnetic Recording Media (수직자기기록매체용 Fe-Co-B/M 하지연자성층의 미세결정구조 및 자기특성)

  • 공석현;손인환;금민종;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.888-892
    • /
    • 2004
  • It is necessary to develop soft magnetic layer with high saturation magnetization 4 $\pi{M}_s$ and in-plane magnetic anisotropy field Hk for soft magnetic underlayer of perpendicular magnetic recording media with high signal to noise ratio. Fe-Co-B layer with high 4 $\pi$Ms of about 23 kG deposited on Ni-Fe and Ni-Fe/Si seedlayer exhibited very high in-plane magnetic anisotropy filed Hk of about 280 and 380 Oe, respectively, In-plane XRD studies clarified that the lattice spacing of planes along the easy axis direction was longer than that along the hard axis direction in the Fe-Co-B layers with high Hk. These results indicate that high Hk of Fe-Co-B/Ni-Fe and Fe-Co-B/[Ni-Fe/si] layers were resulted from magnetoelastic anisotropy owing to a residual stress. Moreover, the high Hk in the Fe-Co-B/Ni-Fe layer was maintained until 30$0^{\circ}C$ annealing temperature.

Soft Robots Based on Magnetic Actuator (자성 액추에이터 기반의 소프트 로봇)

  • Nor, Gyu-Lyeong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.401-415
    • /
    • 2021
  • Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

Nd2Fe14B Synthesis: Effect of Excess Neodymium on Phase Purity and Magnetic Property

  • Jadhav, Abhijit P.;Ma, Haoxuan;Kim, Dong Soo;Baek, Youn Kyung;Choi, Chul Jin;Kang, Young Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.886-890
    • /
    • 2014
  • The properties of magnetic material of Nd-Fe-B are highly affected by various factors such as particle size, magnetic anisotropy, phase purity and crystal structure. Incorporation of excess neodymium was carried out in various percentages so that it will adjust the proportion of neodymium in the host crystal after reduction treatment and finally help to improve magnetic property of a material. The interdiffusion of Nd-Fe and boron was studied for various compositions and their effect on magnetic property was understood with theoretical concepts. The factors such as amount of hard and soft phase in the reduction treated product is also responsible for the possible exchange coupling between hard and soft phase magnets for better magnetic properties.

Magneto-Impedance Effect of CoFeSiBNi Amorphous Magnetic Films according to the size (CoFeSiBNi 아몰퍼스 합금의 소자 크기에 대한 자기-임피던스 효과 관찰)

  • Park, Byung-Kyu;Hwang, Sung-Woo;Moon, Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.339-341
    • /
    • 2007
  • Soft ferromagnetic materials are very useful for many sensors using magnetic materials with high permeability, low coercivity and low hysteresis loss. Among them, FeCoSiBNi amorphous magnetic films show us a good impedance change(about 3.05%/Oe, at 12MHz) by the exterior magnetic field in this experiment. These are produced by rapid solidification from the melt and the material is ejected in a jet from a nozzle and quenched in a stream of liquid. After that, we make them a shape of wire with different sizes of width. Thus, we can find that the impedance change (122.16%, at 12MHz) is occurred and the fabricated magnetic wire has the characteristics of good sensor element.

  • PDF

Development of Powdered Soft Magnetic Material Suitable for Electric Devices Operating at High Frequencies

  • Ishimine, Tomoyuki;Maeda, Toru;Toyoda, Haruhisa;Mimura, Kouji;Nishioka, Takao;Sugimoto, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.802-803
    • /
    • 2006
  • Recently, there has been a growing demand for soft magnetic materials with high conversion characteristics, due to the trend of electric devices to higher-frequency range. For ruduceing core loss in the high-frequency range, using finely grained and high-resistivity Fe-based alloy powder is most efficient methods. But, conventionally, there's been a compressibility problem for such powder. In this work, Fe-based alloy powder that offers both high resistivity and high compressibility was developed by studyuing composition of the powder, and reduction of core loss of P/M soft magnetic materials in the high frequency range was achieved.

  • PDF