DOI QR코드

DOI QR Code

Cu Metallization for Giga Level Devices Using Electrodeposition

전해 도금을 이용한 기가급 소자용 구리배선 공정

  • Kim, Soo-Kil (Center for Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Kang, Min-Cheol (School of Chemical and Biological Engineering, Seoul National University) ;
  • Koo, Hyo-Chol (School of Chemical and Biological Engineering, Seoul National University) ;
  • Cho, Sung-Ki (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Jae-Jeong (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yeo, Jong-Kee (LG Chem Ltd.)
  • 김수길 (한국과학기술연구원 연료전지연구단) ;
  • 강민철 (서울대학교 화학생물공학부) ;
  • 구효철 (서울대학교 화학생물공학부) ;
  • 조성기 (서울대학교 화학생물공학부) ;
  • 김재정 (서울대학교 화학생물공학부) ;
  • 여종기 (LG화학)
  • Published : 2007.05.28

Abstract

The transition of interconnection metal from aluminum alloy to copper has been introduced to meet the requirements of high speed, ultra-large scale integration, and high reliability of the semiconductor device. Since copper, which has low electrical resistivity and high resistance to degradation, has different electrical and material characteristics compared to aluminum alloy, new related materials and processes are needed to successfully fabricate the copper interconnection. In this review, some important factors of multilevel copper damascene process have been surveyed such as diffusion barrier, seed layer, organic additives for bottom-up electro/electroless deposition, chemical mechanical polishing, and capping layer to introduce the related issues and recent research trends on them.

반도체 소자의 고속화, 고집적화, 고신뢰성화에 대한 요구는 알루미늄 합금으로부터 구리로의 배선 물질의 변화를 유도하였다. 낮은 비저항과 높은 내열화성을 특징으로 하는 구리는 그 전기적, 재료적 특성이 알루미늄과 상이하여 배선 형성에 있어 새로운 주변 재료와 공법을 필요로 한다. 본 총설에서는 상감공정(damascene process)을 사용하는 다층 구리 배선 공정에 있어 핵심이 되는 구리 전해 도금(electrodeposition) 공정을 중심으로 확산 방지막(diffusion barrier) 및 도전층(seed layer), 바닥 차오름(bottom-up filling)을 위한 전해/무전해 도금용 유기 첨가제, 화학적 기계적 평탄화(chemical mechanical polishing) 및 표면 보호막(capping layer) 기술 등의 금속화 공정에 대한 개요와 개발 이슈를 소개하고 최근의 연구 결과를 통해 구리 배선 공정의 최신 연구 동향을 소개하였다.

Keywords

References

  1. J. G. Ryan., R. M. Geffken, N. R. Poulin, and J. R. Paraszczak, 'The Evolution of Interconnection Technology at IBM', IBM J. Res. Dev., 39, 371 (1995) https://doi.org/10.1147/rd.394.0371
  2. S. P. Murarka and S. W. Hymes, 'Copper Metallization for ULSI and Beyond', Crit. Rev. Solid State Mater. Sci., 20, 87 (1995) https://doi.org/10.1080/10408439508243732
  3. International Technology Roadmap for Semiconductor-2005 Update, http://www.itrs.net
  4. Y. Y. Wu, A. Kohn, and M. Eizsenberg, 'Structures of Ultra-Thin Atomic-Layer-Deposited TaNx Films', J. Appl. Phys., 95, 6167 (2004) https://doi.org/10.1063/1.1711176
  5. J.-S. Park, S.-W. Kang, and H. Kim, 'Growth Mechanism and Diffusion Barrier Property of Plasma-Enhanced Atomic Layer Deposition Ti-Si-N Thin Films', J. Vac. Sci. Technol. B, 24, 1327 (2006) https://doi.org/10.1116/1.2198846
  6. K.-S. Kim, M.-S. Lee, S.-S. Yim, H.-M. Kim, K.-B. Kim, H.-S. Park, W. Koh, W.-M. Li, M. Stokhof, and H. Sprey, 'Evaluation of Integrity and Barrier Performance of Atomic Layer Deposited $WN_{x}C_{y}$ Films on Plasma Enhanced Chemical Vapor Deposited $SiO_{2}$ for Cu Metallization', Appl. Phys. Lett., 89, 081913-1 (2006) https://doi.org/10.1063/1.2338768
  7. C. W. Lee, and Y. T. Kim, 'Effects of $NH_{3}$ Pulse Plasma on Atomic Layer Deposition of Tungsten Nitride Diffusion Barrier', J. Vac. Sci. Technol. B, 24, 1432 (2006) https://doi.org/10.1116/1.2203639
  8. S. Rawal, D. P. Norton, H. Ajmera, T. J. Anderson, and L. McElwee-White, 'Properties of Ta-Ge-(O)N as a Diffusion Barrier for Cu on Si', Appl. Phys. Lett., 90, 051913-1 (2007) https://doi.org/10.1063/1.2435979
  9. B. R. Murthy, W. M. Yee, A. Krishnamoorthy, R. Kumar, and D. C. Frye, 'Self-Assembled Monolayers as Cu Diffusion Barriers for Ultralow-k Dielectrics', Electrochem. Solid-State Lett., 9, F61 (2006) https://doi.org/10.1149/1.2201988
  10. C.-C. Chang, S.-K. JangJian, and J. S. Chen, 'Dependence of Cu/TaN/Ta Metallization Stability on the Characteristics of Low Dielectric Constant Materials', J. Electrochem. Soc., 152, G517 (2005) https://doi.org/10.1149/1.1921669
  11. R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, 'Diffusion Studies of Copper on Ruthenium Thin Film', Electrochem. Solid-State Lett., 7, G154 (2004) https://doi.org/10.1149/1.1757113
  12. S. K. Cho, S.-K. Kim, H. Han, J. J. Kim, and S. M. Oh, 'Damascene Cu Electrodeposition on Metal Organic Chemical Vapor Deposition-Grown Ru Thin Film Barrier', J. Vac. Sci. Technol. B, 22, 2649 (2004) https://doi.org/10.1116/1.1819911
  13. J. Reid, 'Copper Electrodeposition: Principles and Recent Progress', Jpn. J. Appl. Phys., 40, 2650 (2001) https://doi.org/10.1143/JJAP.40.2650
  14. W. H. Lee, Y. K. Ko, I. J. Byun, B. S. Seo, J. G. Lee, P. J. Reucroft, J. U. Lee, and J. Y. Lee, 'Chemical Vapor Deposition of an Electroplating Cu Seed Layer Using Hexafluoroacetylacetonate Cu (1,5-dimethylcyclooctadiene)', J. Vac. Sci. Technol. A, 19, 2974 (2001) https://doi.org/10.1116/1.1405511
  15. Y. S. Diamand, V. Dubin, and M. Angyal, 'Electroless Copper Deposition for ULSI', Thin Solid Films, 262, 93 (1995)
  16. K. Weiss, S, Riedel, S. E. Schulz, M. Schwerd, H. Helneder, H. Wendt, and T. Gessner, 'Development of Different Copper Seed Layers with Respect to the Copper Electroplating Process', Microelectron. Eng., 50, 433 (2000) https://doi.org/10.1016/S0167-9317(99)00312-3
  17. C. Jezewski, W. A. Lanford, C. J. Wiegand, J. P. Singh, P.-I. Wang, J. J. Senkevich, and T.-M. Lu, 'Inductively Coupled Hydrogen Plasma-Assisted Cu ALD on Metallic and Dielectric Surfaces', J. Electrochem. Soc., 152, C60 (2005) https://doi.org/10.1149/1.1850340
  18. S.-K. Kim, S. K. Cho, J. J. Kim, and Y.-S. Lee, 'Superconformal Cu Electrodeposition on Various Substrates', Electrochem. Solid-State Lett., 8, C19 (2005) https://doi.org/10.1149/1.1833687
  19. A. Radisic, Y. Cao, P. Taephaisitphongse, A. C. West, and P. C. Searson, 'Direct Copper Electrodeposition on TaN Barrier Layers', J. Electrochem. Soc., 150, C362 (2003) https://doi.org/10.1149/1.1565137
  20. J. J. Kim, S.-K. Kim, and Y. S. Kim, 'Direct Plating of Low Resistivity Bright Cu Film onto TiN Barrier Layer via Pd Activation', J. Electrochem. Soc., 151, C97 (2004) https://doi.org/10.1149/1.1633269
  21. O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, 'Electrodeposition of Copper Thin Film on Ruthenium; A Potential Diffusion Barrier for Cu Interconnects', J. Electrochem. Soc., 150, C347 (2003) https://doi.org/10.1149/1.1565138
  22. T. P. Moffat, M. Walker, P. J. Chen, J. E. Bonevich, W. F. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala, M. Leskela, and D. Josell, 'Electrodeposition of Cu on Ru Barrier Layers for Damascene Processing', J. Electrochem. Soc., 153, C37 (2006) https://doi.org/10.1149/1.2131826
  23. D. Josell, C. Witt, and T. P. Moffat, 'Osmium Barriers for Direct Copper Electrodeposition in Damascene Processing', Electrochem. Solid-State Lett., 9, C41 (2006) https://doi.org/10.1149/1.2149214
  24. D. Josell, J. E. Bonevich, T. P. Moffat, T. Aaltonen, M. Ritala, and M. Leskela, 'Iridium Barriers for Direct Copper Electrodeposition in Damascene Processing', Electrochem. Solid-State Lett., 9, C48 (2006) https://doi.org/10.1149/1.2150165
  25. J. O. Dukovic, in: H. Gerischer, C. W. Tobias (Eds.), 'Advances in Electrochemical Science and Engineering', vol. 3, VCH, Weinheim, 1994, p. 121
  26. M. Datta and D. Landolt, 'Fundamental Aspects and Applications of Electrochemical Microfabrication', Electrochim. Acta, 45, 2535 (2000) https://doi.org/10.1016/S0013-4686(00)00350-9
  27. M. Paunovic and M. Schlesinger, 'Fundamentals of Electrochemical Deposition', John Wiley & Sons Inc., NY, 1998, p.182
  28. K. M. Takahashi and M. E. Gross, 'Transport Phenomena That Control Electroplated Copper Filling of Submicron Vias and Trenches', J. Electrochem. Soc., 146, 4499 (1999) https://doi.org/10.1149/1.1392664
  29. S.-K. Kim, 'Advanced Metallization for High Performance Devices Using Superconformal Cu Electrodeposition', Ph.D. Thesis, Seoul National University (2004)
  30. A. C. West, 'Theory of Filling of High-Aspect Ratio Trenches and Vias in Presence of Additives', J. Electrochem. Soc., 147, 227 (2000) https://doi.org/10.1149/1.1393179
  31. S.-Y. Chiu, J.-M. Shieh, S.-C. Chang, K.-C. Lin, B.-T. Dai, C.-F. Chen, and M.-S. Feng, 'Characterization of Additive Systems for Damascene Cu Electroplaing by the Superfilling Profile Monitor', J. Vac. Sci. Technol. B, 18, 2835 (2000) https://doi.org/10.1116/1.1322042
  32. J. J. Kim, S.-K. Kim, and Y. S. Kim, 'Catalytic Behavior of 3-Mercapto-1-Propane Sulfonic Acid on Cu Electrodeposition and Its Effect on Cu Film Properties for CMOS Device Metallization', J. Electroanal. Chem., 542, 61 (2003) https://doi.org/10.1016/S0022-0728(02)01450-X
  33. S.-K. Kim and J. J. Kim, 'Superfilling Evolution in Cu Electrodeposition; Dependence on the Aging Time of the Accelerator', Electrochem. Solid-State Lett., 7, C98 (2004) https://doi.org/10.1149/1.1777552
  34. A. Frank and A. J. Bard, 'The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries', J. Electrochem. Soc., 150, C244 (2003) https://doi.org/10.1149/1.1557081
  35. T. P. Moffat, D. Wheeler, M. D. Edelstein, and D. Josell, 'Superconformal Film Growth: Mechanism and Quantification', IBM J. Res. & Dev., 49, 19 (2005) https://doi.org/10.1147/rd.491.0019
  36. J. Reid and S. Mayer, 'Factors Influencing Fill of IC Features Using Electroplated Copper', in Proceedings of Advanced Metallization Conference, p. 53, Orland, Florida (1999)
  37. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, 'Superconformal Electrodeposition of Copper in 500-90 nm Features', J. Electrochem. Soc., 147, 4524 (2000) https://doi.org/10.1149/1.1394096
  38. D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat, 'Superconformal EJectrodeposition in Submicron Features', Phys. Rev. Lett., 87, 016102 (2001) https://doi.org/10.1103/PhysRevLett.87.016102
  39. Y. Cao, P. Taephaisitphongse, R. Chalupa, and A. C. West, 'Three-Additive Model of Superfilling of Copper', J. Electrochem. Soc., 148, C466 (2001) https://doi.org/10.1149/1.1377898
  40. W. C. West, S. Mayer, and J. Reid, 'A Superfilling Model that Predicts Bump Formation', Electrochem. Solid-State Lett., 4, C50 (2001) https://doi.org/10.1149/1.1375856
  41. D. Josell, B. Baker, C. Witt, D. Wheeler, and T. P. Moffat, 'Via Filling by Electrodeposition', J. Electrochem. Soc., 149, C637 (2002) https://doi.org/10.1149/1.1517583
  42. D. Josell, D. Wheeler, and T. P. Moffat, 'Superconformal Electrodeposition in Vias', Electrochem. Solid-State Lett., 5, C49 (2002) https://doi.org/10.1149/1.1452485
  43. T. P. Moffat, D. Wheeler, C. Witt, and D. Josell, 'Superconformal Electrodeposition Using Derivitized Substrates', Electrochem. Solid-State Lett., 5, C110 (2002) https://doi.org/10.1149/1.1521290
  44. D. Josell, D. Wheeler, W. H. Huber, J. E. Bonevich, and T. P. Moffat, 'A Simple Equation for Predicting Superconformal Electrodeposition in Submicrometer Trenches', J. Electrochem. Soc., 148, C767 (2001) https://doi.org/10.1149/1.1414287
  45. T. P. Moffat, D. Wheeler, W. H. Huber, and D. Josell, 'Superconformal Electrodeposition of Copper', Electrochem. Solid-State Lett., 4, C26 (2001) https://doi.org/10.1149/1.1354496
  46. S. K. Cho, S.-K. Kim, and J. J. Kim, 'Superconformal Cu Electrodeposition Using DPS; A Substitute Accelerator for Bis(3-sulfopropyl) Disulfide', J. Electrochem. Soc., 152, C330 (2005) https://doi.org/10.1149/1.1891645
  47. J. J. Kelly, C. Tian, and A. C. West, 'Leveling and Microstructural Effects of Additives for Copper Electrodeposition', J. Electrochem. Soc., 146, 2540 (1999) https://doi.org/10.1149/1.1391968
  48. W.-P. Dow and C.-W. Liu, 'Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method', J. Electrochem. Soc., 153, C190 (2006) https://doi.org/10.1149/1.2165743
  49. J. Reid and J. Zhou, 'Leveler Molecular Weight and Concentration Impact on Damascene Copper Electroplating Bath Electrochemical Behavior and Film Properties', 209th Electrochemical Society Meeting, Abstract #422, May7-12, Denver, Colorado (2006)
  50. S.-K. Kim, D. Josell, and T. P. Moffat, 'Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling', J. Electrochem. Soc., 153, C826 (2006) https://doi.org/10.1149/1.2354456
  51. S.-K. Kim, D. Josell, and T. P. Moffat, 'Electrodeposition of Cu in the PEI-PEG-CI-SPS Additive System; Reduction of Overfill Bump Formation During Superfilling', J. Electrochem. Soc., 153, C616 (2006) https://doi.org/10.1149/1.2216356
  52. C. H. Lee, S. H. Cha, A. R. Kim, J.-H. Hong, and J. J. Kim, 'Optimization of a Pretreatment for Copper Electroless Deposition on Ta Substrates', J. Electrochem. Soc., 154, D182 (2007) https://doi.org/10.1149/1.2432074
  53. P. P. Lau, C. C. Wong, and L. Chan, 'Improving Electroless Cu Via Filling, with Optimized Pd Activation', Appl. Sur. Sci., 253, 2357 (2006) https://doi.org/10.1016/j.apsusc.2006.05.001
  54. Y.-S. Kim, G. A. T. Eyck, D. Ye, C. Jezewski, T. Karabacak, H.-S. Shin, J. J. Senkevich, and T.-M. Lu, 'Atomic Layer Deposition of Pd on TaN for Cu Electroless Plating', J. Electrochem. Soc., 152, C376 (2005) https://doi.org/10.1149/1.1899285
  55. S. Shingubara, Z. Wang, O. Yaegashi, R. Obata, H. Sakaue, and T. Takahagi, 'Bottom-Up Fill of Copper in Deep Submicrometer Holes by Electroless Plating', Electrochem. Solid-State Lett., 7, C78 (2004) https://doi.org/10.1149/1.1707029
  56. Z. Wang, Z. Liu, H. Jiang, and X. W. Wang, 'Bottom-up Fill Mechanisms of Electroless Copper Plating with Addition of Mercapto Alkyl Carboxylic Acid', J. Vac. Sci. Technol. B, 24, 803 (2006) https://doi.org/10.1116/1.2167988
  57. C. H. Lee, S. C. Lee, and J. J. Kim, 'Bottom-up Filling in Cu Electroless Deposition Using Bis-(3-sulfopropyl)-sidulfide (SPS)', Electrochim. Acta, 50, 3563 (2005) https://doi.org/10.1016/j.electacta.2005.01.009
  58. C. H. Lee, S. C. Lee, and J. J. Kim, 'Improvement of Electrolessly Gap-Filled Cu Using 2, 2' -Dipyridyl and Bis-(3-sulfopropyl)disulfide (SPS)', Electrochem. Solid-State Lett., 8, C110 (2005) https://doi.org/10.1149/1.1943551
  59. C. H. Lee, S. K. Cho, and J. J. Kim, 'Electroless Cu Bottom-Up Filling Using 3-N,N-dimethylaminodithiocarbamoyl-l-propanesulfonic Acid', Electrochem. Solid-State Lett., 8, J27 (2005) https://doi.org/10.1149/1.2063291
  60. M. Hasegawa, Y. Okinaka, Y. Shacham-Diamand, and T. Osaka, 'Void-Free Trench-Filling by Electroless Copper Deposition Using the Combination of Accelerating and Inhibiting Additives', Electrochem. Solid-State Lett., 9, C138 (2006) https://doi.org/10.1149/1.2206008
  61. D. DeNardis, D. Rosales-Yeomans, L. Borucki, and A. Philipossian, 'Chracterization of Copper-Hydrogen Peroxide Film Growth Kinetics', Thin Solid Films, 513, 311 (2006) https://doi.org/10.1016/j.tsf.2006.02.010
  62. T.-H. Tsai, Y.-F. Wu, and S.-C. Yen, 'A Study of Copper Chemical Mechanical Polishing in Urea-Hydrogen Peroxide Slurry by Electrochemical Impedance Spectroscopy', Appl. Surf. Sci., 214, 120 (2003) https://doi.org/10.1016/S0169-4332(03)00272-1
  63. S. Kondo, N. Sakuma, Y. Homma, and N. Ohashi, 'Slurry Chemical Corrosion and Galvanic Corrosion During Copper Chemical Mechanical Polishing', Jpn. J. Appl. Phys., 39, 6216 (2000) https://doi.org/10.1143/JJAP.39.6216
  64. J.-W. Lee, M.-C. Kang and J. J. Kim, 'Characterization of 5-Aminotetrazole as a Corrosion Inhibitor in Copper Chemical Mechanical Polishing', J. Electrochem. Soc., 152, C827 (2005) https://doi.org/10.1149/1.2104247
  65. S. Pandija, D. Roy, and S. V. Babu, 'Chemical Mechanical Planarization of Copper Using Abrasive-Free Solutions of Oxalic Acid and Hydrogen Peroxide', Mat. Chem. Phys., in press
  66. S. Kondo, N. Sakuma, Y. Homma, Y. Goto, N. Ohashi, H. Yamaguchi, and N. Owada, 'Abrasive-Free Polishing for Copper Damascene Interconnection', J. Electrochem. Soc., 147, 3907 (2000) https://doi.org/10.1149/1.1393994
  67. S. Balakumar, X. T. Chen, Y. W. Chen, T. Selvaraj, B. F. Lin, R. Kumar, T. Hara, M Fujimoto, and Y. Shimura, 'Peeling and Delamination in CU/$SiLK^{TM}$ Process During Cu-CMP', Thin Solid Films, 161 (2004)
  68. W. Shao, S. G. Mihaisalkar, T. Sritharan, A. V. Vairagar, H. J. Engelmann, O. Aubel, E. Zschech, A. M. Gusak, and K. N. Tu, 'Direct Evidence of Cu/Cap/Liner Edge Being the Dominant Electromigration Path in Dual Damascene Cu Interconnects', Appl. Phys. Lett., 90, 052106-1 (2007) https://doi.org/10.1063/1.2437689
  69. H. Nakano, T. Itabashi, and H. Akahoshi, 'Electro less Deposited Cobalt-Tungsten-Boron Capping Barrier Metal on Damascene Copper Interconnection', J. Electrochem. Soc., 152, C163 (2005) https://doi.org/10.1149/1.1860512
  70. S. Y. Chang, C. C. Wan, Y. Y. Wang, C. H. Shih, M. H. Tsai, S. L. Shue, C. H. Yu, and M. S. Liang, 'Characterization of Pd-Free Electroless Co-Based Cap Selectively Deposited on Cu Surface Via Borane-Based Reducing Agent', Thin Solid Films, 515, 1107 (2006) https://doi.org/10.1016/j.tsf.2006.07.044
  71. C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, and A. K. Stamper, 'Reduced Electromigration of Cu Wires by Surface Coating', Appl. Phys. Lett., 81, 1782 (2002) https://doi.org/10.1063/1.1504491
  72. H. Einati, V. Bogush, Y. Sverdlov, Y. Rosenverg, and Y. Shacham-Diamand, 'The Effect of Tungsten and Boron on the Cu Barrier and Oxidation Properties of Thin Electroless Cobalt-Tungsten-Boron Films', Microelectron. Eng., 82, 623 (2005) https://doi.org/10.1016/j.mee.2005.07.082
  73. J. J. Kim, Y. S. Kim, and S.-K. Kim, 'Oxidation Resistive Cu Films by Room Temperature Surface Passivation with Thin Ag Layer', Electrochem. Solid-State Lett., 6, C17 (2003) https://doi.org/10.1149/1.1534732
  74. J. P. Gambino, C. L. Johnson, J. E. Therrien, D. B. Hunt, J. E. Wynne, S. Smith, S. A. Mongeon, D. P. Pokrinchak, and T. M Levin, 'Stress Migration Lifetime for Cu Interconnects With CoWP-Only Cap', IEEE Trans. Device Mater. Rel., 6, 197 (2006) https://doi.org/10.1109/TDMR.2006.876602