DOI QR코드

DOI QR Code

Humidification Optimization in Silicon-based Miniaturized Fuel Cell

실리콘으로 제작된 소형 연료 전지에서 가습 조건의 최적화

  • Kwon, Oh-Joong (Research Center for Energy Conversion and Storage, School of Chemical and Biological Engineering, Seoul National University) ;
  • Won, Ho-Youn (Research & Development Center Hanwha Chemical Corporation) ;
  • Kim, Jae-Jeong (Research Center for Energy Conversion and Storage, School of Chemical and Biological Engineering, Seoul National University)
  • 권오중 (서울대학교 화학생물공학부, 에너지 변환.저장 연구 센터) ;
  • 원호연 (한화석유화학중앙연구소) ;
  • 김재정 (서울대학교 화학생물공학부, 에너지 변환.저장 연구 센터)
  • Published : 2007.05.28

Abstract

Single fuel cell was fabricated with a MEA (membrane electrode assembly) that had a $4cm^2$ active area and with silicon bipolar plates those were introduced to miniaturize the fuel cell by replacing heavy weight graphite plates. Optimum humidification condition for the single cell was selected based on performance results obtained varying humidifier temperature at a fixed feed rate of hydrogen and oxygen. Furthermore, to study the effect of humidification condition on the performance of a fuel cell stack, the fuel cell stack consisting of two MEAs and silicon bipolar plates was studied, then problems and characteristics of silicon-based fuel cell stack were examined.

연료 전지의 소형화를 위하여 흑연(graphite)를 기본으로 하는 분리판을 실리콘분리판으로 대체하였으며, 실리콘 분리판과 active area가 $4cm^2$인 MEA (membrane electrode assembly)와 결합하여 단위 전지를 제작하였다. 단위 전지에 공급되는 수소와 산소의 공급량은 고정하고 가습기의 구동 온도만을 변화시키면서 단위 전지의 성능을 확인하고 최적의 가습 조건을 결정하였다. 또한 가습 조건이 실리콘으로 제작된 연료 전지 스택에 미치는 영향을 알아보기 위하여 실리콘 분리판과 2개의 MEA로 이루어진 스택을 제작하여 가습 조건의 영향을 알아보고 실리콘 분리판으로 제작된 연료전지 스택의 문제점 및 특징을 알아보았다.

Keywords

References

  1. L. James, and D. Andrew, 'Fuel Cell System Explained', John Wiley & Sons, Chichester, West Sussex (2002)
  2. G. O. Mepsted and J. M. Moore, 'Handbook of Fuel Cells' v 3, John Wiley & Sons, Chichester, West Sussex (2003)
  3. Y. Jingrang, C. Ping, M. Zhiqi, and Y. Baolian, 'Fabrication of miniature silicon wafer fuel cells with improved performance', J. Power Sources, 124, 40-46 (2003) https://doi.org/10.1016/S0378-7753(03)00618-9
  4. T. Pichouat, B. Gauthier-Menuel, and D. Hauden, 'A new proton-conducting porous silicon membrane for small fuel cells', Chem. Eng. J. 101, 107-111 (2004) https://doi.org/10.1016/j.cej.2004.01.019
  5. K.-B. Min, S. Tanaka, and M. Esashi, IEEE 6th Int. Conf., Micro Electro. Mech. Sys., 379-382 (2003)
  6. K. Shah, W. C. Shin, and R. S. Besser, 'A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques', Sensor. Actuat. B-Chem., 97, 157-167 (2004) https://doi.org/10.1016/j.snb.2003.08.008
  7. J. S. Wainright, R. F. Savinell, C. C. Liu, and M. Lin, 'Microfabricated fuel cells', Electrochim. Acta., 48, 2869-2877 (2003) https://doi.org/10.1016/S0013-4686(03)00351-7
  8. W. H. Ko, J. T. Sumint, and G. J. Yeh, 'Micro-machining and micro-packaging for transducers' Elsevier (1985)
  9. J. Huang, D. G. Baird, and J. E. McGrath, 'Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials' J. Power Sources, 150, 110-119 (2005) https://doi.org/10.1016/j.jpowsour.2005.02.074
  10. R. P. O'Hayer, S-W Cha, W. Colella, and F. B. Prinz, 'Fuel Cell Fundamentals' John Wiley & Sons, New York (2006)