• Title/Summary/Keyword: Measurement Devices

Search Result 1,571, Processing Time 0.028 seconds

The Advent of Cuffless Mobile Device Blood Pressure Measurement: Remaining Challenges and Pitfalls

  • Hae-Young Lee;Thilo Burkard
    • Korean Circulation Journal
    • /
    • v.52 no.3
    • /
    • pp.198-204
    • /
    • 2022
  • Blood pressure measurement (BPM) is an essential part of medical examination, and therefore accuracy of BPM devices is crucial. Over the past few years, there has been a rise in new BPM techniques using photoplethysmographic (PPG) signals and complex algorithms for blood pressure estimation. Especially the combination of a mobile device or a smartphone with a camera using PPG may potentially revolutionize BPM in the future. The first-ever BPM application to be approved as a medical device was one by the Korean Ministry of Food and Drug Safety in 2020, despite the lack of robust scientific evidence proving its validity. While the prospect of using these novel BPM devices is an opportunity, there are also some critical issues around calibration and utility in different patient groups that need to be resolved before they can be incorporated into daily clinical practice.

A Study on the Implementation of the DC Characteristic Measurement System for Semiconductor Devices (반도체 소자의 직류특성 측정 시스템의 구현에 관한 연구)

  • Park, In-Kyu;Shim, Tae-Eun;Jeong, Hae-Yong;Kim, Jae-Chul;Park, Jong-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.837-842
    • /
    • 2001
  • In this paper, we design and implement the DC characteristic measurement system for semiconductor devices. The proposed system is composed of 4 SMU(Source and Measure Unit) channels. Various efforts in hardware and software have been made to reduce the measurement errors. Internal and external sources of errors in measurement system especially in pA range measurement have been identified and removed. Also, various digital signal processing techniques are developed. Calibration is executed under the control of microprocessor periodically. Experimental results show that the implemented system can measure the DC characteristic of semiconductor devices with less than 0.2% error in various voltage and current source/measurement range.

  • PDF

Establishment of strain measurement system for evaluation of strain effect in HTS tapes under magnetic field

  • Dedicatoria, Marlon J.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.14-17
    • /
    • 2011
  • The evaluation of the electromechanical properties of HTS CC tapes is one of the foremost procedures to be done to ensure the applicability of superconducting wires to electric devices. A precise measurement of the stress and strain is important in deriving the mechanical properties under operating environment. Up to now, there is no standard test method yet for the electromechanical property evaluation of HTS tapes under self field and external magnetic field although there are already reports on the different devices used to evaluate these properties. Strain can be measured by adopting a strain gauge or a high resolution double extensometer. In this study, strain effect on $I_c$ in HTS CC tapes under magnetic fields was evaluated. Comparison of advantages and setback of strain measuring devices were discussed. In addition, a dual strain measurement system using both the SG and extensometer may be practical to lessen the burden in case one of the measuring devices does not work well.

Thermal Contact Resistance Measurement of Metal Interface at Cryogenic Temperature (극저온에서 금속표면의 열 접촉 저항 측정)

  • Kim, Myung Su;Choi, Yeon Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • The thermal contact resistance (TCR) is one of the important resistance components in cryogenic systems. Cryogenic measurement devices using a cryocooler can be affected by TCR because the device has to consist of several metal components that are in contact with each other for heat transfer to the specimen without a cryogen. Therefore, accurate measurement and understanding of TCR is necessary for the design of cryogenic measurement devices using a cryocooler. The TCR occurs at the interface between metals and it can be affected by variable factors, such as the roughness of the metal surface, the contact area and the contact pressure. In this study, we designed a TCR measurement system at variable temperature using a cryocooler as a heat sink. Copper was selected as a specimen in the experiment because it is widely used as a heat transfer medium in cryogenic measurement devices. We measured the TCR between Cu and Cu for various temperatures and contact pressures. The effect of the interfacial materials on the TCR was also investigated.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Estimation of PM2.5 Correction Factor for Optical Particle Counter in Ambient Air (대기환경에서 광산란 미세먼지 측정기의 PM2.5 보정계수 산정)

  • Kim, Jong Bum;Kim, Danbi;Noh, Sujin;Yoon, Kwan Hoon;Park, Duckshin;Lee, Jeong Joo;Kim, Jeongho
    • Particle and aerosol research
    • /
    • v.16 no.2
    • /
    • pp.49-59
    • /
    • 2020
  • Various devices have been developed to the measurement of particulate matter pollutants, and Optical Particle Counter (OPC) that can be easily and quickly measured is widely used lately. The measured value by OPC is converted to weight concentration using the correction factor (CF). The calculation of CF is very important to improve the reliability and accuracy of OPC. In this study, the CF calculation study of light scattering laser photometer (model 8533, TSI) was carried out to measure in the atmospheric environment using 2 gravimetric devices and 3 light scattering laser photometer devices. Regression analysis and Tukey tests were used to significance the test of measurement devices. Measurements were carried out twice. There was a comparative analysis of measurement data between light scattering laser photometer and gravimetric devices in 1st measurement, and then the Evaluation of PM2.5 concentration corrected by CF performed in 2nd measurement. As a result of the significance analysis between light scattering laser photometer and gravimetric devices, the correlation between the same method was high, but the correlation between different methods was low. CF was calculated as 0.4258 based on the measurement results, and it is a similar level to previous studies at home and abroad. It is expected that these results can be used as basic data in the future study for air quality measurement research using light scattering laser photometer. Also, in order to improve the accuracy of the measurement techniques and the development of technology in the atmospheric environment, CF calculation research should be conducted continuously.

Design of Continuous Passive Motion Medical Device System with Range of Motion Measurement Function (관절가동범위 측정 기능을 갖는 연속수동운동 의료기기 시스템 설계)

  • Kang Won Lee;Min Soo Park;Do Woo Yu;Oh Yang;Chang Ho Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.87-92
    • /
    • 2023
  • As the elderly population increases, the number of patients with various joint diseases, including degenerative arthritis, is steadily increasing. CPM medical devices are needed to effectively treat degenerative arthritis that is common in the elderly population. Domestic CPM medical devices have limited functions and are highly dependent on imports for expensive imported medical devices. To solve this problem, we designed a ROM measurement function using a current sensor that is not present in existing composite joint CPM medical devices. The algorithm was designed using the fact that the force caused by joint stiffness greatly increases the current flowing through the DC motor. In addition, the need for digital healthcare in the medical field is gradually expanding as the proportion of chronically ill patients increases due to the spread of the non-face-to-face economy due to COVID-19 and the aging population. Therefore, this paper aims to improve the performance of CPM medical devices by allowing real-time confirmation of rehabilitation exercise information and operation range measurement results in accordance with digital healthcare trends through a Bluetooth application developed as an Android studio.

  • PDF

A Study on Performance Characteristics for Auxiliary Converter of Korean High Speed Train (한국형 고속열차 보조컨버터 성능 특성에 관한 연구)

  • Han, Young-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.247-249
    • /
    • 2006
  • As the on-board electric devices determine the performances of vehicles, production of reliable devices is important. To keep the reliability of devices constant, management of performance evaluation of the on-board devices is crucial. Because temperature bas a serious effect on failures of the components of the devices, its measurement is the first step for good management. In this study, we described performance characteristics of domestic auxiliary block developed through G7 project. We measured the performances of auxiliary block during test running by the developed on-line measurement system. After we save the input real-time data from each signal of Korean High Speed Train through the network line, we can acquire necessary information through Post-Processing program. We verify the auxiliary converter characteristics of Korean High Speed Train by this system.

  • PDF

Fault Diagnosis and Performance Evaluation of Auxiliary Block for Korean High-Speed Railway (한국형 고속열차 보조전원장치 고장진단과 성능평가)

  • Kim, Seog-Won;Kim, Ki-Hwan;Kim, Sang-Soo;Koo, Hun-Mo;Joo, Hyun-Wook;Han, Young-Jae
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.612-617
    • /
    • 2006
  • As the on-board electric devices determine the performances of vehicles, production of reliable devices is important. To keep the reliability of devices constant, management of performance evaluation of the on-board devices is crucial. Because temperature has a serious effect on failures of the components of the devices, its measurement is the first step for good management. In this study, we described performance characteristics of domestic auxiliary block developed through G7 project. We measured the performances of auxiliary block during test running by the developed on-line measurement system. After we save the input real-time data from each signal of Korean High Speed Train through the network line, we can acquire necessary information through post-processing program. We verify the motor block characteristics of Korean High Speed Train by this system.