• Title/Summary/Keyword: Maximum Boost

Search Result 216, Processing Time 0.026 seconds

Implemented of Photovoltaic Inverter System by a Maximum Power Point Tracking (최대전력점 추적에 의한 태양광 인버터 시스템 구현)

  • Song, In-Sun;Kim, Sil-Keun;Jung, Seoung-Hwan;Hong, Soon-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.224-225
    • /
    • 2007
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter. The maximum power point tracking control is based on generated circuit control MOSFET switch of two boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage.

  • PDF

Novel Peak-Power Tracking Algorithm for Photovoltaic Conversion System

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeng-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.25-31
    • /
    • 2007
  • In this paper, a novel MPPT(Maximum Power Point Tracking) algorithm for power of PV(Photovoltaic) systems is presented using a boost converter for a connected single phase inverter. On the basic principle of power generation for the PV(photovoltaic) module, the model of a PV system is presented. On the basis of this model, simulation of this PV system and algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT#s switch in full bridge. Furthermore, a low cost control system for solar energy conversion using the DSP is developed, based on the boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.

Design of a PWM DC-DC Boost Converter with Adaptive Dead-Time Control Using a CMOS 0.18um Process (CMOS 0.18um 공정을 이용한 Dead-Time 적응제어 기능을 갖는 PWM DC-DC Boost 변환기 설계)

  • Hwang, In-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.285-288
    • /
    • 2012
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. To reduce the efficiency degradation due to these losses, this paper presents a PWM DC-DC boost converter with adaptive dead-time control. In light loads, power switching is also employed to increase the efficiency. The designed DC-DC boost converter can thus achieve high efficiency at wide current range. The proposed DC-DC boost converter has 3.3V output from a 2.5V input with 0.18um technology. It operates at 500KHz and has a maximum power efficiency of 97.8%.

  • PDF

Maximum Power Control of Small Direct-Drive Wind Power Generator (소형 직접구동형 풍력발전기의 최대 출력제어)

  • Kim Chul-Ho;Lee Woo-Seok;Seo Young-Taek;Oh Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.875-877
    • /
    • 2004
  • Research related to renewable energy is urgently required to cope with the depletion of fossil fuel and the environmental pollution. This paper deals with maximum power control of 1kW rating wind power generator. To implement direct-drive generator, axial flux permanent magnet generator is adopted to test the converter. The blade is attached to the surface of outer rotor disk. Generally wind power generator is operated under the rated wind speed. To capture maximum power at my given wind speed, the coordination of generator and converter is essential. Buck/Boost converter is designed to charge 24V battery and under the low wind speed it operates as boost converter.

  • PDF

High efficiency photovoltaic DC-DC charger possible to use the buck and boost combination mode (승압 강압 콤비네이션 모드가 가능한 고효율 태양광 충전용 DC-DC 컨버터)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In the present industrial field, the demand for the development of the solar power source device and the charging device for the solar cell is gradually increasing. The solar charger is largely divided into a DC-DC converter that converts the voltage generated from the sunlight to a charging voltage, and a battery and a charger that are charged with an actual battery. The conventional charger topology is used either as a Buck converter or a Boost converter alone, which has the disadvantage that the battery can not always be charged to the desired maximum power as input and output conditions change. Although studies using a topology capable of boosting and stepping have been carried out, Buck-Boost converters or Sepic converters with relatively low efficiency have been used. In this paper, we propose a new Buck Boost combination power converter topology structure that can use Buck converter and Boost converter at the same time to improve inductor current ripple and power converter efficiency caused by wide voltage control range like solar charger.

The MPPT Control Method of The Seaflow Generation by Using Fuzzy Controller in boost Converter (boost 컨버터에 퍼지제어기를 적용한 조류 발전의 MPPT제어)

  • Kim, Cheon-Kyu;Kang, Hyoung-Seok;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.131-133
    • /
    • 2008
  • In this paper, the control method of extracting maximum power from the seaflow energy is proposed. This Paper describes a variable speed seaflow generation system with Permanent magnet synchronous motor, bridge rectifier, buck-boost converter and Fuzzy controller. In this Proposed seaflow generation system, the duty ratio of buck-boost converter is controlled by the fuzzy controller. An advantage of MPPT control method presented in this paper don't need to use the characteristic of seaflow turbine at various seaflow speed and measure the tidal speed and the rotating speed of tidal turbine. Therefore, the Proposed system has the characteristics of lower cost, higher efficiency and lower complexity. The effectiveness of algorithm is simulated based on Matlab Simulink.

  • PDF

In vivo dosimetry and acute toxicity in breast cancer patients undergoing intraoperative radiotherapy as boost

  • Lee, Jason Joon Bock;Choi, Jinhyun;Ahn, Sung Gwe;Jeong, Joon;Lee, Ik Jae;Park, Kwangwoo;Kim, Kangpyo;Kim, Jun Won
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.121-128
    • /
    • 2017
  • Purpose: To report the results of a correlation analysis of skin dose assessed by in vivo dosimetry and the incidence of acute toxicity. This is a phase 2 trial evaluating the feasibility of intraoperative radiotherapy (IORT) as a boost for breast cancer patients. Materials and Methods: Eligible patients were treated with IORT of 20 Gy followed by whole breast irradiation (WBI) of 46 Gy. A total of 55 patients with a minimum follow-up of 1 month after WBI were evaluated. Optically stimulated luminescence dosimeter (OSLD) detected radiation dose delivered to the skin during IORT. Acute toxicity was recorded according to the Common Terminology Criteria for Adverse Events v4.0. Clinical parameters were correlated with seroma formation and maximum skin dose. Results: Median follow-up after IORT was 25.9 weeks (range, 12.7 to 50.3 weeks). Prior to WBI, only one patient developed acute toxicity. Following WBI, 30 patients experienced grade 1 skin toxicity and three patients had grade 2 skin toxicity. Skin dose during IORT exceeded 5 Gy in two patients: with grade 2 complications around the surgical scar in one patient who received 8.42 Gy. Breast volume on preoperative images (p = 0.001), ratio of applicator diameter and breast volume (p = 0.002), and distance between skin and tumor (p = 0.003) showed significant correlations with maximum skin dose. Conclusions: IORT as a boost was well-tolerated among Korean women without severe acute complication. In vivo dosimetry with OSLD can help ensure safe delivery of IORT as a boost.

A Design of Current-mode Buck-Boost Converter using Multiple Switch with ESD Protection Devices (ESD 보호 소자를 탑재한 다중 스위치 전류모드 Buck-Boost Converter)

  • Kim, Kyung-Hwan;Lee, Byung-Suk;Kim, Dong-Su;Park, Won-Suk;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.330-338
    • /
    • 2011
  • In this paper, a current-mode buck-boost converter using Multiple switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.5MHz oscillation frequency, and maximum efficiency 90%. Moreover, this paper proposes watchdog circuits in order to ensure the reliability and to improve the performance of dc-dc converters. An electrostatic discharge(ESD) protection circuit for deep submicron CMOS technology is presented. The proposed circuit has low triggering voltage using gate-substrate biasing techniques. Simulated result shows that the proposed ESD protection circuit has lower triggering voltage(4.1V) than that of conventional ggNMOS(8.2V).

The Concentrating Photovoltaic System using a Solar Tracker (태양위치 추적 장치를 이용한 집광형 태양광 발전시스템)

  • Yoo, Yeong-tae;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • The solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change. Also, The solar cells should be operated at the maximum power point. In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control. The result was less then 5% when compared the catalogue of solar cell module and the simulation through a mathematics modelling. The boost rate of boost converter was similar to 167 % with the simulation.

PWM CMOS DC-DC Boost Converter with Adaptive Dead-Time Control (Dead-Time 적응제어 기능을 갖는 PWM CMOS DC-DC 부스트 변환기)

  • Hwang, In-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2012
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. To reduce the efficiency degradation due to these losses, this paper presents a PWM DC-DC boost converter with adaptive dead-time control. The proposed DC-DC boost converter delivering 3.3V output from a 2.5V input is designed with CMOS $0.3{\mu}m$ technology. It operates at 500kHz and has a maximum power efficiency of 97.3%.