• Title/Summary/Keyword: Maximization methods

Search Result 146, Processing Time 0.021 seconds

The Expectation and Sparse Maximization Algorithm

  • Barembruch, Steffen;Scaglione, Anna;Moulines, Eric
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • In recent years, many sparse estimation methods, also known as compressed sensing, have been developed. However, most of these methods presume that the measurement matrix is completely known. We develop a new blind maximum likelihood method-the expectation-sparse-maximization (ESpaM) algorithm-for models where the measurement matrix is the product of one unknown and one known matrix. This method is a variant of the expectation-maximization algorithm to deal with the resulting problem that the maximization step is no longer unique. The ESpaM algorithm is justified theoretically. We present as well numerical results for two concrete examples of blind channel identification in digital communications, a doubly-selective channel model and linear time invariant sparse channel model.

Competitive Influence Maximization on Online Social Networks under Cost Constraint

  • Chen, Bo-Lun;Sheng, Yi-Yun;Ji, Min;Liu, Ji-Wei;Yu, Yong-Tao;Zhang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1263-1274
    • /
    • 2021
  • In online competitive social networks, each user can be influenced by different competing influencers and consequently chooses different products. But their interest may change over time and may have swings between different products. The existing influence spreading models seldom take into account the time-related shifts. This paper proposes a minimum cost influence maximization algorithm based on the competitive transition probability. In the model, we set a one-dimensional vector for each node to record the probability that the node chooses each different competing influencer. In the process of propagation, the influence maximization on Competitive Linear Threshold (IMCLT) spreading model is proposed. This model does not determine by which competing influencer the node is activated, but sets different weights for all competing influencers. In the process of spreading, we select the seed nodes according to the cost function of each node, and evaluate the final influence based on the competitive transition probability. Experiments on different datasets show that the proposed minimum cost competitive influence maximization algorithm based on IMCLT spreading model has excellent performance compared with other methods, and the computational performance of the method is also reasonable.

A study of registration algorithm based on 'Chamfer Matching' and 'Mutual Information Maximization' for anatomical image and nuclear medicine functional image ('Chamfer Matching'과 'Mutual Information Maximization' 알고리즘을 이용한 해부학적 영상과 핵의학 기능영상의 정합 연구)

  • Yang, Hee-Jong;Juh, Ra-hyeong;Song, Ju-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.104-107
    • /
    • 2004
  • In this study, using brain phantom for multi-modality imaging, we acquired CT, MR and PET images and performed registration of these anatomical images and nuclear medicine functional images. The algorithms and program applied for registration were Chamfer Matching and Mutual Information Maximization algorithm which have been using frequently in clinic and verified accuracy respectively. In result, both algorithms were useful methods for CT-MR, CT-PET and MR-PET. But Mutual Information Maximization was more effective algorithm for low resolution image as nuclear medicine functional image.

  • PDF

Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems

  • Zhang, Aihua;Yang, Shouyi;Li, Jianjun;Li, Chunlei;Liu, Zhoufeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3498-3511
    • /
    • 2016
  • We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.

Comparison of ICA Methods for the Recognition of Corrupted Korean Speech (잡음 섞인 한국어 인식을 위한 ICA 비교 연구)

  • Kim, Seon-Il
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • Two independent component analysis(ICA) algorithms were applied for the recognition of speech signals corrupted by a car engine noise. Speech recognition was performed by hidden markov model(HMM) for the estimated signals and recognition rates were compared with those of orginal speech signals which are not corrupted. Two different ICA methods were applied for the estimation of speech signals, one of which is FastICA algorithm that maximizes negentropy, the other is information-maximization approach that maximizes the mutual information between inputs and outputs to give maximum independence among outputs. Word recognition rate for the Korean news sentences spoken by a male anchor is 87.85%, while there is 1.65% drop of performance on the average for the estimated speech signals by FastICA and 2.02% by information-maximization for the various signal to noise ratio(SNR). There is little difference between the methods.

Bayesian Image Reconstruction Using Edge Detecting Process for PET

  • Um, Jong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1565-1571
    • /
    • 2005
  • Images reconstructed with Maximum-Likelihood Expectation-Maximization (MLEM) algorithm have been observed to have checkerboard effects and have noise artifacts near edges as iterations proceed. To compensate this ill-posed nature, numerous penalized maximum-likelihood methods have been proposed. We suggest a simple algorithm of applying edge detecting process to the MLEM and Bayesian Expectation-Maximization (BEM) to reduce the noise artifacts near edges and remove checkerboard effects. We have shown by simulation that this algorithm removes checkerboard effects and improves the clarity of the reconstructed image and has good properties based on root mean square error (RMS).

  • PDF

A Penalized Principal Component Analysis using Simulated Annealing

  • Park, Chongsun;Moon, Jong Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1025-1036
    • /
    • 2003
  • Variable selection algorithm for principal component analysis using penalty function is proposed. We use the fact that usual principal component problem can be expressed as a maximization problem with appropriate constraints and we will add penalty function to this maximization problem. Simulated annealing algorithm is used in searching for optimal solutions with penalty functions. Comparisons between several well-known penalty functions through simulation reveals that the HARD penalty function should be suggested as the best one in several aspects. Illustrations with real and simulated examples are provided.

Power Density Maximization of the Brushless DC Generator by Controlling the Optimal Current Waveform (최적 전류파형제어를 통한 브러시리스 DC 발전기의 출력밀도 최대화에 관한 연구)

  • 이형우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.430-436
    • /
    • 2004
  • This paper presents an advanced control technique for power density maximization of the Brushless DC (BLDC) generator by using the linear tracking method. In a generator of given rating, the weight and size of the system affect the fuel consumption directly. Therefore, power density is one of the most important issues in a stand-alone generator. BLDC generator has high power density in the machine point of view and additional increases of power density by control means can be expected. Conventional rectification methods cannot achieve the maximum power possible because of hon-optimal current waveforms. The optimal current waveform to maximize power density and minimize machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation and experimental work. A new simple algebraic method has been proposed to accomplish the proposed control without an FFT which is time consuming and complicated.

A Regression based Unconstraining Demand Method in Revenue Management (수입관리에서 회귀모형 기반 수요 복원 방법)

  • Lee, JaeJune;Lee, Woojoo;Kim, Junghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.467-475
    • /
    • 2015
  • Accurate demand forecasting is a crucial component in revenue management(RM). The booking data of departed flights is used to forecast the demand for future departing flights; however, some booking requests that were denied were omitted in the departed flights data. Denied booking requests can be interpreted as censored in statistics. Thus, unconstraining demand is an important issue to forecast the true demands of future flights. Several unconstraining methods have been introduced and a method based on expectation maximization is considered superior. In this study, we propose a new unconstraining method based on a regression model that can entertain such censored data. Through a simulation study, the performance of the proposed method was evaluated with two representative unconstraining methods widely used in RM.

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF