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The Expectation and Sparse Maximization Algorithm

Steffen Barembruch, Anna Scaglione, and Eric Moulines

Abstract: In recent years, many sparse estimation methods, also
known as compressed sensing, have been developed. However,
most of these methods presume that the measurement matrix
is completely known. We develop a new blind maximum like-
lihood method—the expectation-sparse-maximization (ESpaM)
algorithm—for models where the measurement matrix is the prod-
uct of one unknown and one known matrix. This method is a vari-
ant of the expectation-maximization algorithm to deal with the re-
sulting problem that the maximization step is no longer unique.
The ESpaM algorithm is justified theoretically. We present as well
numerical results for two concrete examples of blind channel iden-
tification in digital communications, a doubly-selective channel
model and linear time invariant sparse channel model.

Index Terms: Compressive sensing (CS), deconvolution, multipath
channels, smoothing methods.

I. INTRODUCTION

The field of compressed sensing (CS) has evolved in the re-
cent years to tackle under-determined, but sparse linear systems.
A vector x of dimension m is called sparse if the number of ac-
tive components ||x|jp = r < m, i.e., components that are dif-
ferent from 0 is small compared to m. A CS problem can then
be written as

min [[xllg subjectto Y =Ax+¢ ¢))
where Y is the (known) observation of dimension K, also called
the measurements of x. A is the (known) sensing or measure-
ment matrix and € is some Gaussian noise vector, see for exam-
ple [1], [2].

However, in CS the measurement matrix A is assumed
known. We will generalize this to a blind setting where it can
be decomposed into a product of two matrices where only one
matrix is known. The blind compressed sensing problem (BCS)
is then given by

min [[x|lp subjectto Y =S¥x+¢ (2)
where only the matrix ¥ is assumed known. We note that this
form is quite general. For example, the matrix S may be consid-
ered as the measurement matrix and W as a basis transformation.
In that case, the true parameter vector b = ¥x would not be
sparse, and the original problem would be written as Y = Sh+e¢.
On the other hand, if ¥ is the identity matrix, then the problem
is completely blind. The problem formulation differs, however,
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significantly from the CS problem as in (1). We consider S to be
a unknown random variable with a known distribution. There-
fore, it is obvious that in the BCS problem as in (2) more mea-
surements are necessary to recover x as compared to (1). The
focus of the CS problem is rather on how one may use the spar-
sity to reduce the necessary number of measurements while still
being able to recover X. In the BCS problem, the focus is rather
on how one may use the sparsity to improve the estimate of x
given the measurements Y. To solve this problem, we propose
what we call the expectation-sparse-maximization (ESpaM) al-
gorithm. We will also give precise conditions for ¥ and S for
which the estimation becomes unique if the number of measure-
ments tends to infinity.

We will use a general and well known approach to blind
estimation, namely maximum-likelihood (ML) estimation of
the unknown vector x. Without the sparsity constraint, the
expectation-maximization (EM) algorithm [3] is an efficient
method to derive the ML estimate, see [4] and the references
therein. It is an iterative procedure repeating the expectation
and the maximization step. In the first step, the expectation of
the symbol sequence with respect to a given parameter estimate
needs to be calculated. In the second step, the parameter esti-
mate is updated.

However, it turns out that in general in model (2) the maxi-
mization step is no longer unique, i.e., the set of solutions forms
a subspace of positive dimension. In the ESpaM algorithm, we
propose to perform a sparse signal reconstruction step using
methods such as matching pursuit (MP), orthogonal matching
pursuit (OMP) or £1 regularization to choose the sparsest ele-
ment of this subspace as the new parameter estimate of x for the
EM iteration.

Even though the expectation step remains unchanged, it is in
general not easily implemented. Therefore, we will present the
model in the most general form, but we will then rather concen-
trate on a number of examples for which an implementation of
the expectation step is known or will be derived in this contribu-
tion (c.f. subsection IV-A). ‘

For example, we may assume that the unknown part is a
Markov chain with a finite state space, such that (2) becomes
a hidden Markov model (HMM). The noise is assumed to be
independently normally distributed. This setting corresponds to
a blind deconvolution problem in digital communications. The
expectation step is then efficiently implemented by the Baum-
Welch algorithm [5].

If the state space of the Markov chain is too large, the Baum-
Welch algorithm is no longer feasible. In this case, we propose
to use a particle smoothing algorithm to reduce the complex-
ity. Particle smoothing algorithms approximate the smoothing
distribution, i.e., the distribution of a symbol given all the ob-
servations up to time K. Most of them are based on a particle
filtering algorithm approximating the filtering distribution of s,
i.e., given the observations up to time %. Particle filtering has
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already proved to be useful in many contexts [6], for example in
digital communications [7], [8]. Several smoothing algorithms
based on particle filtering have been proposed in the literature
(6], [9]-[11]. We will exemplarily use the fixed-interval smooth-
ing [6], which is closest to the Baum-Welch algorithm and has
proved to perform well in digital communications settings [10].

To demonstrate the potential of the ESpaM algorithm, we will
present two applications, both in blind channel identification for
digital communications. In this background, the unknown ma-
trix S corresponds to the transmitted, unknown symbol sequence
stemming from a finite alphabet and Y to the signal at the re-
ceiver. The parameter vector x describes the parameters of the
transmission channel.

The remainder is organized as follows. We will start with de-
scribing the background work in blind CS as well as in channel
identification, in particular coupled with CS methods. We will
then present the general model, followed by a short review of
the EM algorithm and the presentation of the ESpaM algorithm.
We will discuss why we think the ESpaM algorithm is the only
efficient way to include the sparsity in the EM algorithm and
we discuss theoretical properties of the algorithm. We will then
present the two concrete applications for blind channel identifi-
cation, a linear modulation model on firstly a time-invariant and
secondly a doubly-selective channel. We finish with numerical
results for both linear modulation models.

A. Background Work

The (non-blind) CS problem as in (1) has been well studied in
general in the literature, see for example [1], [2]. Many methods
to solve this problem have been proposed, for example the MP
[12], the OMP [13], [14], or a minimization with respect to the
L1-norm.

On the other hand, the BCS problem as in (2) has rarely been
considered in this form. The recent work by Eldar and Gleich-
man [15] proposes methods for a different type of BCS prob-
lems. They concentrate on the case, when the sparsity basis is
unknown while the measurement matrix is known. This may
thus be seen as the inverse of (2). Furthermore, in contrast to our
approach they consider the basis to be deterministic and demon-
strate several constraints for the basis such that the recovery re-
mains unique. The possible constraints are a finite number of
potential bases, the sparsity of the basis itself or structural con-
straints on the basis like block diagonality and orthogonality.

CS has also been often used for the two applications in dig-
ital communications that we consider. As before, most results
are on training based or non-blind channel identification, where
the transmitted symbol S is known and thus the problem reduces
to a CS problem instead of the BCS problem that we consider.
Bajwa et al. [16] give a comprehensive overview of recent ad-
vances in what they call compressed channel sensing. One of
the first applications has for example been [17] to cater for an
unknown number of channel paths. Sparse frequency-selective
channels occurring in underwater communications, residential
ultrawideband channels and digital television channels amongst
others have been considered for example in [18], [19]. Com-
pressed channel sensing for doubly-selective channels has been
for example considered in [20], [21] and for multi-antenna chan-
nels in [22] amongst many others. Rapidly time-varying sparse
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channels have been covered in [23], [24]. Even if the channel
is not sparse, a benefit from sparse methods is possible by in-
troducing an over-complete basis [25] to improve the estima-
tion accuracy. Since all of these methods only consider training
based identification and therefore essentially assume the mea-
surement matrix to be known, we refer to [16], [21] for a more
thorough overview of compressed channel sensing. The focus
for training based methods is furthermore not only on the recon-
struction or estimation of the channel, but also on the sensing
or the design of the training sequence. Since we consider blind
identification, we do not have influence on the design and con-
centrate thus solely on the reconstruction of the channel.

Blind deconvolution in general without a sparsity constraint
has been often considered in the literature [26]. Those methods
are often based on order moments and require a large number
of observations. Most recent literature takes into account coding
schemes. We will, however, consider cases without coding or
without assuming the coding to be known. A coded symbol se-
quence is no longer a Markov chain, such that the algorithms we
propose to implement the expectation step do not apply. How-
ever, as soon as it is possible to estimate the posterior distribu-
tion of S, the ESpaM algorithm may be applied.

A common approach to blind identification of doubly-
selective channels are basis expansion models [26] that intro-
duce a basis for the parameter space such that the impulse re-
sponse of the channel is represented by a linear combination of
a finite number of basis vectors. The idea has been adapted by
using over-complete bases rendering the estimation sparse [25].
Furthermore, many methods are based on ML criterion. In gen-
eral the exact ML estimate is prohibitive in a reasonable com-
putational complexity. This leads to applying approximate algo-
rithms as for example the method by Salut [27]. This algorithm
is an iterative ML method combining basis expansion, Kalman
filtering and particle filtering. The EM algorithm [3] on which
our algorithm is based is another well-known method for param-
eter estimation in incomplete data models and more specifically
for blind identification [28], [29].

As if et al. [30] published one of the first and only results
on a blind compressive sensing approach to deconvolution in
communications. However, the method they propose is for the
case without noise and of a randomly precoded signal where
each symbol is drawn from R. Their algorithm is an optimiza-
tion procedure over the joint space of the signal and the chan-
nel impulse response. This space is, however, not convex if the
symbol alphabet is finite and therefore not applicable in the two
applications we consider.

II. MODEL DESCRIPTION

We consider the sparse linear model

Y=SV(0)x+e 3)

where the vector x = (1, -+, z0)T of size @ x 1 is considered
to be sparse, i.e., 7 = |[x[[o < Q. The observations or mea-
surements of length K is given by Y = (y1,---,yx)T and the
noise is given by € = (1, - - -, x)T. The unknown matrix S has
K rows and n columns. Each of the K x n entries lies in some
state space X, such that the state space of S is & = A\, The
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second matrix ¥(6) is assumed known and depends on some
known parameter § € ©. It is of size n x Q.

We will show that the sparse EM algorithm independently
splits up in the expectation and the sparse maximization step.
The latter step is easily implemented for this general model for-
mulation. However, the expectation step requires one to com-
pute or at least estimate the posterior conditional probability
distribution of S given the observations and an estimate x’ of
the sparse vector x. Thus, more assumptions on the distribution
of S and on the distribution of the noise have to be made and
be known. Even then, in general calculating the posterior distri-
bution is not feasible. We will therefore now introduce further
exemplary assumptions on the model for which we may provide
an efficient implementation of the expectation step. We stress
that as an efficient implementation of the expectation step for
the plain EM algorithm is available, the application of the sparse
EM algorithm is straightforward.

If the symbol matrix S corresponds in fact to a sequence of
symbols in time s relating to the observations yy, then it is
reasonable to consider the following block structure for S:

S1 0 0
0 S2 0 0

S= 4)
0 0 sk

We assume that s;, is a time-homogeneous Markov chain on the
state space S = X'* of dimension 1 x L. Each of the entries
sk = [sk(1),--,sk(L)] lies in the alphabet X. One could also
allow s; to be time-inhomogeneous, since the algorithms we
present cater also for these cases as long as the transition kernels
are known. The matrix S thus has n = KL columns. In this
case, the measurement matrix

U1(6)

u(0) = 3)

T (60)

is given in block form, where each block ¥ (9) corresponds to
one of the symbols si. Furthermore, we assume that the param-
eter may be written as § = (6y, - - -, 6) such that the gth column
i (0) of ¥ (0) is a function of 6,. Hence, the sensing matrix
at time k£ decomposes into

Uy (0) = [¥r(61), -, ¥r(6q)] .

The EM algorithm is known to work well for exponential
families, i.e., for the noise stemming from that family. For the
ease of notation, we will assume that each of the components ¢},
is independently drawn from the complex normal distribution
Nc(0, 0%) with variance o2,

In many applications the sparsity of x may arrive naturally,
see for example in subsection V-B. A second intuitive applica-

tion of model (3) is, when the actual model is given by
Y=SY(\)3+¢

where now the parameter A is also unknown. If the measure-
ment function ¢ is complicated, direct estimation of the un-
known parameters A, and 3, becomes infeasible. In many

cases, it can be accurately enough estimated by approximat-
ing the continuous parameter space © by a finite, discrete grid
6 = (61, --,60), see for example subsection V-A. The grid
might be chosen such that the columns of the sensing matrix
() are an over-complete basis for the image space of 8. This
is obviously the case if rank (¥()) > K L, implying Q > K L.
It is exact if the true parameters A, lie on the grid and approxi-
mate if not. Then, model (3) clearly is sparse because only those
grid points close to the A, will have corresponding non-zero co-
efficients.

We will now introduce notations for the statistical quantities
and necessary assumptions. Let the density of the joint posterior
distribution of the symbol matrix § given Y and an estimate x’
of the sparse vector X be given by p(S|Y; x’).

If S is given sequentially as in (4), then the observation y;, at
time k only depends on sg, such that (s, yx) is a HMM. The
observation equation is given by

Q
Y = Zskd)k(eq)wq + ek =spUr(0)x + . (6)
g=1

In the remainder, we assume that the standard deviation of the
noise ¢ is known for the ease of presentation, but we note that
it comes at almost no extra costs to include the estimation of
o in the ML estimation. Let g(s, yx, X) denote the likelihood
function of the observation at time step k given s, = s, i.e.,

1
gk (yrls; x) = 3 &XP (‘;1: [s¥y(0)x — Z/k|2) .

We assume that the transition kernel of the Markov chain sy,
from time step k to k£ + 1 is known. For s = s, its density is
given by ¢(|s), such that

P(sq4x € Blsq=s) = / n(s’|s)P(s")
B
for some measurable set 5.
We denote the density of the marginal smoothing distribution
of s, at time step £ given the complete observation vector Y by
pr(sk|Y, X).

III. MAXIMUM LIKELIHOOD ESTIMATION

The estimation of the unknown parameters x is based on max-
imizing the likelihood function [(x) of the observation sequence
Y with respect to x. It is defined as the marginal

1) = | 9l Ysx)d(s) ®
4
by integrating over the space of possible symbol matrices.
The ML estimate of x is hence given by
X = arg max {(x). 9)

X

Since X may not be derived analytically in general, we have to
resort to an iterative procedure to derive an estimate of it. The
EM algorithm [3] is a well known method for ML estimation
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in incomplete data models with noise stemming from the ex-
ponential family. Instead of maximizing the likelihood function
directly, the EM algorithm maximizes the intermediate quantity
in each iteration step. It is defined for the two parameter values
x and x’ as

Q(x,x) = Esg [log (1(S|Y;x)) [Y;x']

- L log (p(S|Y; X)) p(S|Y; X' )dP(S).

(10)

By Es [-|Y;x’] we mean expectation with respect to S condi-
tional on Y and given the parameter value x’. If § is given se-
quentially as in (6), then (10) reduces to

K .
Qxx) = 25 3 [ e (0)x = P (511 Y ) P(5)
k=1

+ const

where the constant term does not depend on the unknown pa-
rameter vector X.

It turns out that if Q(x,x) > Q(x”,x’), then we know as well
that I(x) > I(x"), i.e., an increase in the intermediate quantity
means also an increase in the likelihood. After defining an initial
guess of the parameter @ , the EM algorithm then consists of
the two iterative steps.

1) Expectation: Calculate Q(x, ™).
2) Maximization: Calculate ™) = arg max, Q(X, (),

The EM algorithm is known [4] to converge to a critical point
of the likelihood function. If the likelihood function has several
local maxima, then the EM algorithm has to be set up with sev-
eral different initial parameter values to increase the probability
to converge to the global maximum. In certain cases as the time-
invariant channel model in subsection V-B, the convergence to
the global maximum can be ensured by a certain choice of a set
of initial values [31].

The expectation step consists thus of calculating the marginal
smoothing probabilities p(S|Y;x) given some parameter esti-
mate X which may for example be done with the Baumn-Welch
algorithm [5] in a HMM with a small finite state space.

A. Sparse Parameter Maximization

In contrast to the likelihood function, ¢ (x,x’) can be maxi-
mized more easily. The best channel estimate is given as a solu-
tion of the following system of linear equations:

Ee (x') = Eg(x) x (11)
where
Eoy () = Bs [(52(0))" Y|Y; x|
| (536" ¥)nisivixae)
g
Ex(¥) = Es [(52(0))" $2(6

= [ (s su0)p(si¥sx)a(s).

),Y; X’]

We denote by ()H the Hermitian of a complex matrix.
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If the model is a HMM according to (6), then these quantities
write

By (¢ Zyk / (56 05(0)) ™ pi(s4]Y; X ) AP (s ),

Z/ (s 0 (

If rk (Egs(x’)) = @, then the solution to (11) is unique and
given by (Ee(x')) ™ Esy (x'). In this case, however, 1k (Eg(x')) =
min(Q, L) and the solution is hence only unique if L = ) as
it is the case in subsection V-B, In general, L < @) and the so-
lution to (11) is a subspace of dimension ) — L. We propose
thus to use a sparse algorithm to select the sparsest vector in this
subspace as the new parameter estimate. That is, solving the fol-
lowing problem:

s;c\Ifk(()))pk(skW x')dP(sA).

min [xllo st Eg(x') =Ex(Xx)x (12)
its Lasso problem [2], [32], [33]:

min x]: + A [Eo (x) ~ EsG)xI* (13)
for A > 0 or the Basis pursuit problem [34]:

mxin Ixli st Eg(x') =Eg(x)x (14)

Even if L = @, sparse algorithms may be used to improve
the robustness of the EM algorithm, see for example the simu-
lation results for the time-invariant model of subsection V-B in
Section VII.

Hence, we propose to solve the maximization problem of the
intermediate quantity by applying a sparse algorithm like the
MP [12], the OMP [13], [14] or a £1-regularization to {(11). The
ESpaM algorithm on the initial parameter estimate 19 is thus
given by iterating the following steps:

1) Calculate p(S|Y; %Y or pr(sk]Y; N fork=1,-,
the sequential model. ‘

2) Derive Eo(X¥)) and E(x") .

3) 2+ = Sparse(Esy(ﬁ(i)), Eux*)).

The function Sparse(-, ) denotes the specific sparse algorithm

that takes as input the matrix Ess(i(i)) and the vector Esy(f((i))

to solve problem (11).

K in

B. Discussion on the Sparse ML Estimation

Instead of finding a sparse solution to the actual problem (10),
the sparse EM algorithm described above uses a sparsity con-
straint for the derivative. But since the necessary condition for a
minimum of (10) is that the derivative is equal to 0, the sparsest
solution to (11) will also be the sparsest minimum of (10).

Both the MP and the OMP do not guarantee to find exact
sparse solutions to (11), but since the intermediate quantity is
in general sufficiently smooth, a point having a gradient close to
zero will also be close to the maximum of the intermediate quan-
tity. Furthermore, it is not necessary to find the exact maximum,
since as long as @ increases, the likelihood will also increase
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and so the sequence of iterative parameter estimates will still
converge to a critical point of the likelihood function.

If the symbol matrix S is known, ML estimation of the chan-
nel x is equivalent to minimizing

ISTO)x - VI3 = 355, s Ve (@)x — il (19)
with respect to X. A solution to this problem under additional
sparsity constraints is readily available since sparse algorithms
like the MP and OMP apply directly to (15). Unfortunately, this
may not be generalized to the blind convolution problem. The
maximization step of the EM algorithm now consists of mini-
mizing problem (10) with respect to x, such that ||x[lo < & for
some x < Q. Observe that, if the symbol sequence is known,
the probability distribution in (10) becomes a point mass and
(10) reduces to (15).

It is not possible to rewrite (10) in matrix form such that the
sparse algorithms like the MP and the OMP may be applied.
£1-regularization is still applicable. Its implementation is very
complex because evaluating the right hand side of (10) is very
costly. We have, however, run Monte Carlo experiments for a
moderate channel order L and the numerical results did not show
any performance with respect to the sparse EM algorithm pre-
sented in subsection III-A. Therefore, we strongly recommend
to use the ESpaM algorithm.

A different sparse expectation-maximization type algorithm
that allows to apply the MP and OMP directly to the maximiza-
tion criterion may be established by using a slightly different
maximization criterion. Instead of maximizing the intermediate
quantity, one could maximize

IE[S|Y;x]2(0)x — Y| (16)
where the conditional expectation of S is given by
E[S|Y;x] = / S I(S|Y; X)B(S). a7
XKExL

This is analogous to (15), where S is replaced by the expectation
of it based on the current parameter estimate. It is also similar
to the maximization-maximization algorithm, where the expec-
tation step is replaced by a Viterbi search [35]. Now the sparse
minimization methods like MP or OMP are readily applicable.
However, contrarily to the EM algorithm convergence is not as-
sured and Monte Carlo experiments again on the time-invariant
model showed that the performance is clearly inferior to the ES-
paM algorithm.

C. Convergence Properties of the ESpaM Algorithm

We will now discuss theoretically the convergence properties
of the ESpaM algorithm.

Lemma 1: Let (i(i)
tained by the ESpaM algozrithm.

Then, for every ¢

) be a sequence of estimates of x ob-

! (}2(”1)) >1 (i(i)) . (18)

This lemma follows directly from the fact, that the ESpaM algo-
rithm does not alter the principle of the EM algorithm. Indeed,

the intermediate quantity is still maximized. The ESpam algo-
rithm only provides a criterion which solution in the subspace
of maximal values of the intermediate quantity is preferable.

We have thus established that the ESpaM algorithm will con-
verge (or possibly diverge if the parameter space is not com-
pact). As for the EM algorithm, convergence to the global max-
imum of the likelihood function is not ensured. In general, if the
measurement matrix ¥ is quadratic and of full rank, the like-
lihood function has isolated local maxima, i.e., the maximiza-
tion of the intermediate quantity is unique. An almost immediate
consequence is thus, that the true parameter is a fix point of the
algorithm. However, this is not obvious if ¥ is not of full rank,
since then the maximal values of the the intermediate quantity
form a subspace of the parameter space.

We will now give a sufficient condition for which the true
parameter X still remains a fix point of the ESpaM algorithm.

Assumption 1: We assume that S is not degenerated such
that Ey [SHS] has full rank. Since this is the covariance matrix of
S, we just require that there is no affine relation between two of
the columns of S.

Assumption 2: We assume that every combination of 2p
columns of ¥ is linearly independent. p denotes again the num-
ber of non-zero coefficients in the true parameter vector X. This
requires obviously that L > 2p.

Lemma 2: Let Assumptions 1 and 2 be true. Then, the true
parameter vector X is a fix point of the ESpaM algorithm, i.e.,
there exists no sparser solution.

The proof is not difficult and given in Appendix A. This result
is a lot stronger than the equivalent result in non-blind sparse
models, since then this result only holds true in the noiseless
case. However, in the ESpaM algorithm, the noise is already
taken into account in the expectation step. Hence, the problem
(12) is correct. The solution will satisfy the equality constraints.

IV. SMOOTHING IN HIDDEN MARKOYV MODELS

As mentioned before, the expectation step (E-step) of the EM
algorithm remains the same whether using the plain EM algo-
rithm or the ESpaM algorithm. In general, it is not readily im-
plementable because an analytic solution of the integration is not
possible and a numeric integration is not feasible since the di-
mension of the state space is huge. However, in many practical
applications, the system model is given sequentially as in (6),
i.e., the symbol sequence s;, is a Markov chain and the process
(Sk, yx) is a HMM. If the transition kernel of the hidden Markov
chain sy is unknown, it may be included in the parameter es-
timation, but we will assume here that it is known. Then, the
E-step consists of calculating the marginal smoothing distribu-
tions pg(-|Y; x). Owing to the immense work that has been done
on particle filtering, several generic particle smoothing methods
have been developed to solve this problem [6], [9], [11] that are
based on a particle filter and backward iterations to approximate
the smoothing distribution from the filtering distribution.

In the case of digital communications without coding or with
unknown coding as in models in subsections V-A and V-B, the
state space is furthermore finite. In this case, the generic parti-
cle smoothing may be improved by exploiting the structure of
the state space. Because of the practical relevance of this case,
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we will now present a specific discrete particle smoothing al-
gorithm in more detail. This algorithm has also been used for
the simulations. For the remainder of this section, we consider a
parameter estimate X to be fixed.

A. Smoothing for Finite State Hidden Markov Models

If the state space S is reasonably small, i.e., the alphabet X is
small and the channel order L is not too large, then the Baum-
Welch algorithm [5] is a very efficient and fast implementation.
Unfortunately, the sparsity constraint does not decrease the com-
plexity of the Baum-Welch algorithm and remains O({* Q).

In many applications, the state space is too large for the
Baum-Welch algorithm to be applicable. The complexity may,
however, be significantly reduced with the help of particle
smoothing [6], [10]. These smoothing algorithms rely, in gen-
eral, on a particle filter approximating the marginal filtering
probabilities of s;, given the observations y1.1 = (y1,- -+, yx)7
which we denote
=P =

Pk|k('¥ylzk;x) |, X).

It is approximated by using a discrete, small set of positions in
the state space, called particles, and neglecting the remaining
part of the state space. It is updated sequentially in time. As-
sume that at time step & such a set of N particles £ € S for
i € {1,---, N} with associated weights w}, is given, such that

= EN L wid (& —s)

approximates py (s|y1.x; X) for s € S. The iterative update to
the next time step £+1 is based on the standard filtering decom-
position:

Prejk (85 %) (19)

Prt1|k+1(8|Y1:k41;X)

x Z 41 (Yot 1[8k+15 X) (8[8) iy (8| y1:05 %) (20)
s'’eS

A deterministic approximation for the filtering distribution at
time k-1 is then available by replacing pxx by Py x giving

. N i ofa
Wk+l|lc+1(5; X) o< D iy Wiy 0 (‘5}94-1 - S)

where E;H denote all the N < Nm possible offsprings of the
current particles. The updated weights are given according to
(20) by

it = 500 gvrs (v | Ei050) 0 (G i

To maintain the number of particles at a feasible size, at-
ter each update step, N particles are selected from N possi-
ble offsprings é,g +1- The selected particles are then again de-
noted by & 41+ In [10], it has been shown that a random selec-
tion scheme minimizing the expected £2-norm [36] or the Chi-
Squared distance [10] outperforms deterministic schemes like
the Best-Weights selection [37] for the blind ML estimation.

As mentioned before many algorithms have been developed
to estimate the smoothing distribution based on the the parti-
cle filtering approximation. We will exemplarily use the fixed-

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 4, AUGUST 2010

interval smoothing [6] which is based on the following decom-
position of the smoothing probabilities:

>

s'eS CI
s"eS

Pk+1(S'|Y' x)q (8'sk)
18") Drepie (8" [y1:5 X)

pr(sk|Y;x) = Pk[k(sk|y1:k;x)-

For further information on the smoothing, see [6], [10].

V. APPLICATION: BLIND CHANNEL
IDENTIFICATION

We will now consider blind channel identification in digital
communications as an application of the ESpaM algorithm. We
present a doubly-selective multipath channel model for which
the sparsity arises because we use an overcomplete basis expan-
sion to linearize the model. The second blind identification ap-
plication is for frequency-selective channels with a sparse finite
impulse response of the channel.

A. Doubly-Selective Multipath Channel

As the first example, we consider a linear modulation scheme
in presence of a doubly-selective multipath channel. Let X’ be
the alphabet of the modulation scheme and ag.x = (ag, - -, ax)
a symbol sequence generated independently and uniformly from
X at symbol rate T'. We do not consider coding or assume the
coding to be unknown. The analog transmitted signal is then
given by

K
a(t) = Za,cp(t— kT)
x=0

where p is the modulation pulse.
The impulse response of the channel with M paths is given
by

M
> Bt (1 — Tim)

m=1

h(ta T) =

where §(0) = 1 and 0 otherwise. The attenuations on each path
are given by f,,, the Doppler frequencies by w,, and the de-
lays by 7,,. We assume that we have lower and upper bounds
on the delay, {Tmin, Tmax), and on the Doppler frequencies,
(wmin; wmax)-

Then, the observation at time ¢ is given by

u(t) / m h(t, P)a(t)dr + e(t) @1

K M
= Z G Z Bme?“mp(t — KT — Tm) + £(t).

k=0

(22)

m=1

If the modulation function p decays quickly such that its sup-
port lies within L taps, then after resampling at the symbol rate
the model is equivalent to

Zak l Z le Am:‘“ ﬂ1n+5k

y(kT) = (23)

where

H1(Am, k) = & T p(IT — 1) (24)
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with Ay, = (Ton, Wi )-

Direct estimation of the unknown parameters A, and 3, is
not feasible, especially if M is unknown. Therefore, we intro-
ducea grid @ = (61, - -, 0g) of @ points on the two-dimensional
space of delays and frequencies. If the actual parameters lie on
the grid, the new model is equivalent. Otherwise model (23) is
now approximated by

L-1 Q
Yk = Zak_gz¢l(0q,k)$q + €g- (25)
=0 g=1
We define again x = (z1,---,2¢)7 and introduce the further
notations sg = (ak, -, Qk-r+1) and
Ve(0g) = (¢0(0q,k), -+ b1-1(00,k))",  (26)

as well as the sensing matrix ¥, (#) with gth column ¥ (8)[g] =
Yk (6,). Each coefficient 2, corresponds to the attenuation of a
path of channel that has the Doppler frequency and the delay of
grid point g. Since we assume only a few relevant paths, most
of the coefficients x, will be equal to zero.

Then, model (25) rewrites

e =SV L(0)X + € (27)
for k =1, .-, K or in matrix form
Y =S¥(@)x+¢ (28)

with the same notations as in (3)-(5).

We note, however, that the convergence results of the ES-
paM algorithm hold assuming that the model is exact. However,
due to the fact that we use a finite grid modeling errors will be
present. These errors are, however, due to the modelling and not
to the ESpaM algorithm. Since the focus of this work is on the
concept of the ESpaM algorithm and not on the applications, we
will not consider how to choose the modelling grid and refer to
other works like [25] that discuss this choice.

B. Sparse Time-Invariant Multipath Channel

The time-invariant frequency-selective multipath channel
model is similar to the doubly-selective channel model with the
difference that no Doppler frequencies appear. Assume that ay,
is drawn uniformly and independently from the alphabet X' of
size m. Then, model (23) reduces to

L-1 M
ve = ak—1 Y p(T = 7)Bm + ek (29)
=0 m=1
L-1
= i+ e (30)
=0

with h; = }:ﬁle p({T — 74)PBm. We denote the finite impulse
response of the channel by h = (hq, - -+, hr_1)7. Let sy, regroup
the L most current symbols, ie., sy = (ak, -+ ap—r+1)7.
Then, (30) rewrites

Yk =SLh + . (31)

Instead of the sparsity coming from the introduction of an over-
complete basis as model in subsection V-A, we now assume that
the impulse response h itself is sparse, i.e., the channel order L
is quite large, but only a few coefficients are unequal to zero.
This model is a special case of model (6) with L = Q and

U= [Ty, Iy)T

K times

where 7, denotes the identity matrix of dimension L x L. In
this case, the matrix form of the model may be simplified to
Y=Sh+¢ (32)

where S’ denotes the matrix with rows equal to s, to Sx.

Alternatively, if the pulse shaping filter is known, one can let
&1(0,) = p(IT — 7,) so that each entry of x directly corresponds
to an attenuation and the unknown parameters are given by 7,
and x.

VI. COMPUTATIONAL COMPLEXITY

Due to the generality of the presented model, it is not possible
to give a general discussion of the computational complexity.
We will therefore only consider the case of a discrete HMM,
where the Baum-Welch algorithm or discrete particle smoothing
as in subsection IV-A may be used to implement the expectation
step. This includes the presented examples of the time-invariant
channel and the doubly-selective channel.

Since the expectation step and the maximization step are in-
dependent, we will analyze their complexity separately for each
of the iterations of the sparse EM algorithm.

The Baum-Welch algorithm as an implementation of the ex-
pectation step is in general of complexity O(f€4K), since at
each time step each of the m” states involves a sum over the
mP states at the preceding time step. m denotes again the size of
the modulation constellation. However, in both presented mod-
els, because of the trellis structure of the symbol sequence, the
transition matrix is very sparse and an efficient implementation
reduces the complexity to O({£ K), since every state only has m
possible offsprings, and always m states have exactly the same
offsprings.

The analysis of the complexity particle smoothing algorithm
has again to be split up into two parts, the particle filtering and
the smoothing correction. The particle filtering is in general of
complexity O(NTXK), where N is the number of particles, i.e.,
each particle has m! possible offsprings. This implies as well
that we use a selection method which is linear in the number
of particles, which is the case for the £2-optimal selection. The
complexity of the smoothing iterations is in general unfortu-
nately O(N€K) for most smoothing algorithms.

However, in both presented models the complexity is again
considerably smaller due to the sparsity of the transition ma-
trix. It turns out that the complexity of the smoothing reduces
to O(N log NK) [10], where the logarithmic factor comes from
sorting the particles in a particular way. The complexity of the
filtering part is O(N{K), since each particle now has m off-
springs. In practice, the filtering part takes more time than the
smoothing part.
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Fig. 1. Time-invariant channel: SER over iterations of EM using the

maximization methods, L = 8, p = 2, SNR 12 dB.
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Fig. 2. Time-invariant channel: SER of EM using the maximization meth-
ods, L = 8, p = 2, over different SNR.

Only in such a model with sparse transition matrix a deter-
ministic particle propagation has its use. Otherwise new particle
positions should be randomly sampled from some importance
distribution to keep the complexity at bay.

The complexity of the maximization step depends on the spe-
cific sparse algorithm. The complexity of the MP and OMP ap-
plied to (11) are about O(Q€), since the matrix Eg is quadratic
of size Q@ x Q. If @ is small, then O(N log NK) for the parti-
cle smoothing or O($£K) for the Baum-Welch algorithm are
much larger than O(QF). Hence, the expectation step is com-
putationally much more complex. This is for example the case
for the time-invariant channel. The maximization step becomes,
however, more complex if the number of grid points () gets too
large.

VII. SIMULATIONS
A. Sparse Time-Invariant Multipath Channel

We start by considering the time-invariant channel model in
subsection V-B, since in this case we have a comparable method
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Fig. 3. Time-invariant channel: MSE of channel of EM using the maxi-
mization methods, L = 7, p = 2, over different SNR.

16

readily at hand by using the standard non-sparse maximization
step of the EM algorithm as the solution of (11). This is possible
because only in this case the number of relevant symbols L is
equal to the taps of the channel @, such that Eg has full rank.

We used a QPSK modulation and measured the performance
in terms of the symbol error rate (SER) and the mean-squared
error MSE(x) = E(||% — x|*) of the channel. In the figures, we
refer to the exact solution to (11) as the EM, to the ESpaM using
matching pursuit and the orthogonal matching pursuit solving
(11) as ESpaM—MP and ESpaM—OMBP, respectively. For the
MP and OMP, we used p + 3 iterations, where p is again the
number of active components in the channel impulse response.
This is to show, that it is not necessary to know exactly p, the
algorithms work well even if they are run with more iterations.
However, as we explain later the number of iterations should not
be chosen too large.

Since the algorithms work completely blindly, i.e., no sym-
bol is known, there are obviously symmetries for the estimated
sequence, which are removed before calculating the SER and
the MSE. The support of the sparse channel as well as its coef-
ficients are drawn from a uniform distribution for each Monte-
Carlo run. For each method, we use one single random initial
parameter estimate @,

The first simulations were run with channel order L = 8 and
p = 2 non-zero components. Fig. I shows the MSE over the first
20 EM iterations at SNR 12 dB. The sparse methods MP and
OMP converge considerably faster than the exact method. The
SER after convergence is also slightly smaller for the MP and
OMP, see Fig. 2. In Fig. 3, we compare the MSE of the maxi-
mization methods after 20 iterations of the EM for different SNR
(with L = 7). Even after convergence, the OMP shows still bet-
ter performance than the exact method. The MP has a slightly
higher MSE if the SNR is large. This might indicate that the MP
introduces a slight bias, which is, however, not significant for
the estimation of the SER.

These first simulations showed that for small channel orders
the exact maximization still provides satisfactory results, We
now turn to larger channel orders and replace the Baum-Welch
algorithm by particle smoothing. Fig. 4 compares the approx-
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Fig. 4. Time-invariant channel: SER of ESpaM using Baum-Welch algo-
rithm vs. particle filtering with different particle sizes, L = 8, p = 2,
OMP maximization.
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Fig. 5. Time-invariant channel: SER of particle filtering using the maxi-
mization methods, L = 15, p = 3, N = 100 vs. SNR.

imate EM involving particle smoothing (with different particle
sizes) to the plain EM with the Baum-Welch algorithm both us-
ing the OMP maximization method. We have thus verified that
there is no difference essential between the exact smoothing and
the particle smoothing, i.e., the loss of using particle filtering is
very moderate.

Fig. 5 shows the SER for the four maximization methods us-
ing particle smoothing for a significantly higher channel order
L = 15 with p = 3 active components. It appears that the non-
sparse likelihood function has now many local maxima such that
the EM algorithm is not robust anymore, while the OMP and the
MP still have a very low SER. The same behavior is apparent in
Fig. 5 showing the MSE after 20 iterations.

Finally, we used the channel order L = 20 with p = 4 active
coefficients. Fig. 7 shows the MP and the OMP are the only
methods capable of tracking a channel of such a large order.
The development of the MSE in Fig. 8 reveals that the exact
maximization method is not converging in contrast to the MP
and OMP.

Since Eg has full rank, the correct sparsest solution to (11)

0.55
3 —%— EM
0-5 B e e ESpaM — MP g
—+&— ESpaM - OMP
0.45 ...................................... B
0.4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4
5;) 035 F ]
<o
0.3 .............................................. B

10 12 14 16 18 20
SNR (dB)

Fig. 6. Time-invariant channel: MSE of channel of particle filtering using
the maximization methods, L = 15, p = 3, N = 100 vs. SNR.
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R . ‘ ,
10 12 14 16 18 20
SNR (dB)

Fig. 7. Time-invariant channel: SER of particle filtering using the maxi-
mization methods, L = 20, p = 4, N = 100 vs. SNR.

10

coincides with the solution of the system of equations. Thus,
the EM-algorithm coincides with an ESpaM algorithm that uses
a sparse algorithm that gives the exact sparsest solution, unless
there are numerical instabilities with the standard EM algorithm.
However, the huge performance increase of the ESpaM algo-
rithm coupled with OMP and MP comes from the fact that these
greedy algorithms if stopped after a few number of iterations
force the solution to be exactly sparse. The EM algorithm con-
verges always, but its problem is the convergence to local max-
ima. Restricting the parameter space such that it only contains
sparse vectors obviously avoids or eliminates many of these lo-
cal maxima, such that the ESpaM algorithm with OMP or MP is
much more robust with respect to convergence to local maxima.
This shows, that it is essential not to choose the number of it-
erations of the OMP or MP to large, otherwise the convergence
will be similar to the EM algorithm.

B. Doubly-Selective Multipath Channel

We now turn to the doubly-selective channel model in sub-
section V-A. In contrast to the time-invariant model in subsec-
tion V-B, the plain EM algorithm may not be applied since the
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maximization methods, L = 20, p = 4, N = 100, SNR 16 dB.

0 5 30

matrix F¢ does not have full rank. This is because the number of
grid points @ is much larger than the number of relevant sym-
bols L for each observation. Therefore, the ESpaM algorithm
does not only improve the performance, but is the only applica-
ble ML method. We use the OMP algorithm in the M step.

For the following Monte Carlo experiments, we assume that
the channel consists of two paths, each with a random attenua-
tion, a random delay and a random Doppler frequency which are
drawn independently at each Monte Carlo iteration. The number
of observations is K = 100.

The SER of the ESpaM algorithm is compared to a ge-
nius bound where the Doppler frequencies and the delays are
assumed to be known, i.e., by using the expected symbols
Ey [s41|~vi:k]. Furthermore, we use the MSE of the channel im-
pulse response which is now averaged over time. As a perfor-
mance bound we will use the same sparse method but the sym-
bol matrix is now assumed known. Then, the problem reduces
to the sparse minimization problem

IST(0)x — Y3

to which we also apply the OMP algorithm.

As mentioned before, the algorithm by Salut [27] with 16 par-
ticles is used as a comparison. The initial channel coefficients
were chosen such that the coefficients corresponding to the time-
constant basis vector were random, while the coefficients of the
remaining basis vectors were set to 0. This was clearly superior
to a completely random initialization.

As mentioned before, the algorithm by Salut [27] with 16 par-
ticles is used as a comparison. The initial channel coefficients
were chosen such that the coefficients corresponding to the time-
constant basis vector were random, while the coefficients of the
remaining basis vectors were set to 0. This was clearly superior
to a completely random initialization.

We start with a BPSK modulation and set the maximal
Doppler spread to wmax = 1 X e~2/T and the maximal de-
lay to 27 such that the channel order L = 4 is sufficient. The
grid step size for the estimation is fixed to 1 x e~2/7T for the
Doppler frequencies and 0.337 for the delays. For each Monte
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Fig. 10. Doubly selective channel, BPSK, MSE of channel impulse re-
sponse averaged over time over different SNR, 2 random delays,
and Doppler frequencies off grid.

Carlo run, the delays and doppler frequencies are chosen uni-
formly randomly in the complete range, i.e., they do not lie on
the grid points. The ESpaM algorithm is run over 30 iterations
until convergence. Salut’s algorithm as well as the ESpaM al-
gorithm are started with a set of two different initial parameter
estimates. Fig. 9 shows the BER over different SNRs. The ES-
paM algorithm is thus slightly superior to Salut’s algorithm and
not too far away from the BER for known channel parameters.
The MSE is givenin Fig. 10. The ESpaM algorithm is thus even
more superior to Salut’s algorithm regarding the estimation of
the channel. Furthermore, in contrast to Salut’s algorithm the
ESpaM algorithm also gives an estimate of the Doppler frequen-
cies and delays as well as the number of paths of the channel.

The next simulations have been run with a QPSK modulation,
while the remaining parameters as Doppler frequencies, delays,
and channel order have been kept the same. Fig. 11 shows again
the SER over different SNRs. Obviously, Salut’s algorithm is
not adapted to this more complicated model, while the ESpaM
algorithm still maintains a low SER.

We regard again the QPSK modulation but with a higher max-
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Fig. 11. Doubly selective channel, QPSK, BER over different SNRs, 2
random delays, and Doppler frequencies off grid.
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Fig. 12. Doubly selective channel, QPSK, SER over different SNRs, 2
random delays, and Doppler frequencies off grid, maximal delay 5T,
after 25 iterations of the ESpaM algorithm.

imal delay of 57". This is still small enough, such that the rel-
evant number of symbols L = 6 is sufficiently small to apply
the Baum-Welch algorithm. If it is bigger, the Baum-Welch al-
gorithm may be replaced by a particle smoothing algorithm (see
for example [6], [10] and many others). The maximal bound on
the Doppler spread is again set to Wmax = 1 x €72/T. The grid
step size for the estimation is fixed to 1 x e =3 /T for the Doppler
frequencies and 0.337 for the delays. For the following simu-
lation, one single random initialization was used for the ESpaM
algorithm.

The delays and Doppler frequencies are sampled randomly
in the range between minimal and maximal values. i.e., not on
the grid. Fig. 12 shows the SER after 25 iterations of the ES-
paM algorithm using one single random initialization. The true
delays as well as the Doppler frequencies have been generated
on the grid points. Obviously, the SER of the ESpaM algorithm
is larger than for the known channel, but it is still satisfacto-
rily small. The MSE, see Fig. 13, converges quickly over the
iterations of the ESpaM algorithm. It can be seen that an even
better performance could be achieved by using more EM itera-
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Fig. 13. Doubly selective channel, QPSK, MSE of channel impulse

response averaged over time, over iterations of ESpaM, 2 random
delays, and Doppler frequencies off grid, maximal delay 57", SNR
21 dB.

tions. Almost always the performance of the EM algorithm may
be considerably improved by using several initial values, such
that these results should be understood as a benchmark of the
capacity of the algorithm and not as the lowest MSE or SER
achievable in an actual real world implementation.

VIII. CONCLUSION

We have presented a sparse ML method that brings together
recent advances in CS and blind ML estimation for a broad vari-
ety of models and applications. We have presented two models
in digital communications to demonstrate the capacity of this
algorithm. For the time-invariant channel, the sparse EM algo-
rithm works well as a robust version of the plain EM algorithm,
whereas in the second case of the doubly-selective channel, our
method is a necessary tool to establish an EM algorithm, since
the matrix in the updating equation is not invertible anymore.

The sparse methods are applied to the gradient of the ac-
tual problem, giving the advantage of a well-posed, comparably
small sparse problem, that can be efficiently solved by the MP
or OMP.

APPENDIX
A. Proof of Lemma 2

Note, that standard results of the standard EM algorithm give
that x maximizes (-, x), i.e., it is a solution of (11) such that
Eg (x) = Eg(x) x. (33
To show that x is as well a fix point of the proposed ESpaM
algorithm, we first show that every combination of 2p rows of
Eg(x) is also independent. Secondly, we show that x is a fix
point, i.e., that every other solution to (12) has more non-zero
components than p.
1) We recall that the measurement matrix W is of size ) x L.
Let T be a subset of {1,---,Q} of size 2p and let T~ be the
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remaining indices. For a matrix A let A7 denote the subma-
trix of A consisting of the columns with indices correspond-
ing to 7. Without loss of generality, we assume for the ease
of presentation that ' = {1, - - -, 2p}.
Then, Eg(x) may be decomposed as

H
Ex(x) = [ U E(S TSI (34)

U4 Ex[S"S]21- J ‘

With Assumption 1 Ex[S™S] has full rank L and with As-
sumption 2 the matrix W has rank 2p with L > 2p. Thus,
the upper left block in the block decomposition in (34) has
also rank 2p. Hence, the columns of E(x) with indices T
are independent. Since this is true for every T, every combi-
nation of 2p rows is independent.

Let x’ be a second solution of (33), and assume that x # x’
and that ||x’||¢ < p. Then,

Eg(x —x') = 0.

Since (x — x’) has less than 2p non-zero components, but
any 2p columns of Eg(x) are independent, it follows that
(x — x’) = 0. This is a contradiction.
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