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A novel approach to the classification of ultrasonic NDE signals

using the Expectation Maximization (EM) and Least Mean Square
(LMS) algorithms
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Abstract

Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a
crucial part in the data interpretation process. A number of signal processing methods have been proposed to
classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of
features followed by the use of a neural network for the classification of the signals in the feature space. This
paper describes an alternative approach which uses the least mean square (LMS) method and expectation
maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive
evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and
deposits are not significantly different. These signals must be discriminated to prevent from happening a huge
disaster such as contamination of water or explosion. A mode]l based deconvolution has been described to facilitate
comparison of classification results. The method uses the space alternating generalized expectation maximization
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(SAGE) algorithm in conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in

fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor.

Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam

generator tubes are presented and showed a reasonable performances.

Key words : Ultrasonic signals, Classification, NDE, EM, LMS, SAGE, SAFT, Newton-Raphson method.

I. Introduction

It has long been recognized that there is a need to
inspect machines and materials around people in order
to prevent failures. For example, gas pipelines buried
underground are needed to be inspected regularly to
minimize the possibility of catastrophic failures due to
the weakening effects of corrosion on the pipe. Most
NDE techniques involve the application of some form of
energy to the specimen. A snapshot of the interaction
between the material and energy is taken and analyzed
to determine the state of the specimen. Ultrasonic and
electromagnetic energy are some of the typical forms of
energy that are employed to interrogate the test
specimen [1]. The choice of the specific NDE method
depends on many factors including the size, orientation
and location of the flaw, as well as the type of
material, etc [2]. Ultrasonic testing is a versatile NDE
method which is employed for testing a wide variety of
materials. Using this method, cracks, inclusions and
other kinds of anomalies can be detected even when
they exist deep within the test specimen. Ultrasonic
testing uses high frequency acoustic waves ranging
from 1 to 10 mega Hertz (MHz) which are typically
The

propagates

generated using piezoelectric transducers [3].

ultrasound wave from the transducer

through the material. Ultrasound waves, in general, are
classified on the basis of the mode of vibration of the
particle of the medium with respect to the direction of
propagation of the waves, namely longitudinal,
transverse (or shear), and surface waves. Longitudinal
waves are the most common form of sound where the
In this
wave, alternate compression and rare faction zones are

produced by the vibration of the particles parallel to the

oscillations occur in the longitudinal direction.

direction of the propagation of the wave. In the case
of transverse or shear waves, the direction of particle
displacement is at right angles or transverse to the
direction of propagation. For these kinds of waves to
travel through a material, it is necessary for each
particle of the material to be strongly bound to its

neighbors so that it pulls its neighbor with it as it mo-

ves. Surface waves can travel only along a surface
bounded on one side by strong elastic forces of the
solid. These waves have a velocity of approximately
90% that of shear waves in the same material [3].
The ultrasonic testing method is capable of providing
quantitative information regarding the thickness of the
component, depth of an indicated discontinuity, the size
of the discontinuity, etc. Many types of pulse-echo
ultrasonic flaw detectors are commercially available.
For a flaw detector, three essential working units are
needed in addition to a power supply and a personal
computer (PC) to acquire and save the ultrasonic data.
Typical equipment include a pulse transmitter,
receiver-amplifier and cathode-ray oscilloscope. Figure
1 shows the block diagram of a typical ultrasonic NDE

system [4].
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Fig. 1. Typical setup for ultrasonic NDE system

The pulse transmitter generates a high voltage spike
which sets the transducer into oscillation and the
trigger pulse for starting the oscilloscope display.
There will be an initial pulse called big bang or main
bang, which results from the high voltage spike
striking the transducer. Once the spike is released, the
pulse transmitter becomes an open nonconducting
electrical circuit while the receiving circuit is waiting
for the return signal to strike the transducer. If there
the back echo would
through the test

specimen, reflecting off of the end, and returning to the

are no discontinuities present,

result from the pulse traveling
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The back echo

transducer and converted into an electrical signal whose

transducer. is picked up by the
magnitude is smaller than the transmitted pulse, so it
must be amplified and filtered before it is used for any
purpose.
various types. Commonly, A-Scan, B-Scan and C-Scan

The ultrasonic data can be presented in

types are used. An A-Scan displays the echoes like an
In this type of display, the
X-axis represents time of flight (TOF) of the pulses

ordinary oscilloscope.

converted into distance traveled by the pulses while the
The
B-Scan presentation gives a cross sectional view of the

Y-axis represents the amplitude of the echoes.

part being tested and shows the length and depth of a
flaw in the test material. When moving the transducer
along a straight line on the surface of the test material,
the displacement of the transducer can be converted
into an electrical signal and this value is displayed
along the X-axis and the travel of the ultrasonic pulse
in the test material is represented by the time base
moving the spot along the Y-axis. The C-Scan display
is a plan view with horizontal and vertical positions of
flaws. In other words, the discontinuity echoes are
In this
display mode, X- and Y-axes are both in the plane of

the surface of the test object.

displayed as a top view of the test surface.

Other types of display
modes are also used in industry such as D-, F-, and
P-Scans [5). Aamir [6] proposed a classification system
that classifies the cracks from deposits formed on the
Stages involved in the

steam generator tubes.

classification process include pre-processing of the
B-Scan signals, feature extraction and selection, and
classification using a neural network. The features
were extracted using the discrete wavelet transform
and the coefficients were applied to a multi-layer
perceptron neural network that was trained using the
well-known backpropagation learning algorithm. Feder
[7] developed a computationally efficient algorithm for
parameter estimation of superimposed signals based on
(EM)

objective is to decompose the observed data into their

the expectation maximization algorithm. The
signal components and then to estimate the parameters
signal Fessler [8]
described the space alternating generalized expectation
(SAGE)
parameters sequentially by alternating between several
small

of each component separately.

maximization algorithm, which updates the

hidden-data spaces defined by the algorithm
[91(10]

ultrasonic

designer. Demirli

parametric

presented a
model,
number of Gaussian echoes corrupted by noise, and

generalized

echo composed of a

algorithms for accurately estimating the parameters.

The merits of the model-based estimation method in
ultrasonic application has been explored. In this paper, a
model
facilitate
method
expectation

based deconvolution has been described to
The
generalized

comparison of classification results.
alternating
(SAGE)
conjunction with the Newton-Raphson method which
fast

convergence to estimate the time of flight and the

uses the space

maximization algorithm  in

uses the Hessian parameter resuiting in

distance between the tube wall and the ultrasonic

sensor. Results using these schemes for the
classification of ultrasonic signals from cracks and
deposits within steam generator tubes are presented and

showed a reasonable performance.

II.
Tubes in a Nuclear Power Plant

Ultrasonic NDE of Steam Generator

Steam generators are used for converting water into
steam from heat produced in the reactor core in a
nuclear power plant. Figure 2 shows a typical steam
generator. Each steam generator contains
approximately 3,000 to 16,000 tubes through which hot
Heat is conducted
through the tube wall to a mixture of water and steam
outside of the tube.

radioactive water flows through.

Moistuse Sepmater
and Rehearer

N
Contabment

Primary Loop Wt

Fig. 2. Typical steam generator tubes in nuclear power
plants (From an Electric Power Research Institute
(EPRI) report)

The thermal energy transferred from the primary
coolant causes the generation of steam which in turn is
used for operating turbines. The harsh environmental
that exist within the

conditions steam generator
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contribute to corrosion in the tube. The tubes have to
be inspected periodically to ensure that the tubes are
not causing nuclear contamination of the water on the
secondary side. A popular inspection technique
involves the use of ultrasonic NDE methods. In
inspecting the steam generator tubes, the ultrasonic
transducer moves along the tube axis with water sealed
Figure 3

The steam

between the tube wail and the transducer.
shows the ultrasonic inspection setup.

generator tube is anchored at one end to a thick
ferromagnetic plate called the tube sheet. Figure 3

shows the tube in the tube sheet region. The tubes

may contain cracks in this region. Such cracks usually
extend 2 inches along the tube within and above the
tube sheet.

Fig. 3. Geometry of ultrasonic NDE of the steam

generator tube

The tubes are expanded against the tube sheet and this
may result in the occurrence of cracks. Additionally,
chemical precipitates and dissolved metallic compounds
The
accurnulation and expansion of the deposit material
produces localized bowing of the tube immediately
above the tube sheet [111.
this inspection have nominal center frequencies of 8-11
MHz (within 6dB from ~6 to 16 MHz). The sampling
frequency is 80 MHz and the thickness of the tube wall
is 0.047 inches.

waves with a 195°

are deposited on the tube sheet in this region.

The transducers used in

The transducer transmits longitudinal

incidence angle. The wave
travels through the water and is incident on the inner
wall of the tube as shown in Figure 4 which illustrates
the travel paths of the wave. When the wave arrives
at the tube inner wall, mode conversion occurs and the

shear wave travels into the tube wall internally at a

Signals
piezoelectric elements are sampled using an 8 bit

45° refraction angle. generated by the

converter at a sampling rate of 80 Mb/s.

Volume ot coverage

OD -~

75 *L-Wave Cracks in

Region of
ovgrll for

both transducers

Fig. 4. Illustration of the signal collection

The sampled and digitized signal is a 482-point signal
displayed in an A-Scan format. Note that each pair of
transducers is composed of two elements (forward and
reverse). The signals from the two transducers are
combined to form a composite A-Scan consisting of
964 sample points. The A-Scans are combined along
the tube axis to obtain a 2-dimensional B-Scan image
for each pair of transducers. The ultrasonic wave can
be scattered by cracks present in the tube or
inhomogeneities present in the chemical precipitates and
dissolved metallic compounds that are deposited outside.
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Fig. 5. A-Scan signal of a deposit from the forward
transducer

The latter is benign and must be distinguished from
cracks in the tube wall [12]. The B-Scan image
consists of signal which may represent either cracks or
deposits.  The cracks must Dbe
discriminated from those due to deposits, since cracks
in the tube wall may result in leakage of the primary

signals  from
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coolant. The signals from deposits are, as indicated

before, benign indications and are not a source of
concern. Figures 5 shows the A-Scan signal from one
The first and the third vertical strips

with high amplitudes represent reflections from the

of the cracks.

inner diameter (ID) while the others (second and
fourth) from the ID.
Figure 6 shows a one dimensional A-Scan signal from

represent multiple-reflections

deposits. It is apparent that signals due to cracks and
deposits are not significantly different. Discriminating
these signals manually can be very slow and expensive.
Consequently there is considerable interest in automatic
methods for analyzing the data [13]. Automated

Amplitude
=)
T

| 1
-60 50 100

150 200 250 B/ 400 450
Time of Flight

Fig. 6. A-Scan signal of a deposit from the forward
transducer
methods offer such advantages as consistency of
interpretation, rapid turnaround time and lower overall

costs.

ITI. CLASSIFICATION USING A MODEL BASED
DECONVOLUTION

the pulse-echo wavelet
needs to be estimated accurately since the estimation of

In deconvolution problems,
the location of the scatterer relies on an accurate
estimation of the location of the peak value of the echo

[14]). Even a small error could have a significant impact
on our ability to classify [10][15].

1. Deconvolution of Backscattered Echoes

The magnitude spectrum from the Fourier transform of

the transducer pulse-echo wavelet shows bandpass
characteristics. Therefore, the pulse-echo wavelet, h(t),
can be modelled as a sum of superimposed bandpass
signals (Gaussian echo wavelet). In the time domain

(10] :

M, “a, (2 A7
h(t)= mZ:ow”' e " ™ ocos@nf,,(t- A0+, (1)

where M is the model order, v, is the weight, a, is
the bandwidth factor, A, is the time of flight, f, is

the center frequency, and ®, is the phase of the

corresponding pulse-echo wavelet. The parameters can
be represented as a
9,=la,, A, fnm 0, 0]
the signal contains additive white Gaussian noise
(WGN). Then the pulse-echo wavelet, A(t), can be

written as

vector,

We also assume that

M
h(t)= ZIG( 8, 0+v(t) (2)

where V() is a WGN process and G( 9 ,,;t) represents
a Gaussian echo wavelet. Figure 7 shows an example
of a pulse-echo wavelet generated by the model in

equation (1).
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Fig. 7. A typical pulse-echo wavelet

The corresponding parameter vector is
(01233 107 0 41]. When an ultrasonic echo, s(¢),
is propagated through a frequency independent

homogeneous path and reflected from a flat surface, it



20 / EM3¥ LMS algorithm< ©]-83t] =53 3 A Az E/E 87 A3 A= Ay

can be represented by the model

s(t)=PBh(t-1) (3)

where B is the amplitude, h(t) denotes the transducer
pulse-echo wavelet, and T stands for the time of flight.
Equation (3) means that the ultrasonic backscattered
echo, s(t), is the time-shifted and amplitude scaled
version of the pulse-echo wavelet, A(t). The amplitude
of the backscattered echo, §, basically depends on the
impedance, size or orientation of the scatterer and the
time of flight of the echo, T, is related to the location
of the scatterer indicating the distance between the
transducer and the reflector assuming that the velocity
of ultrasound in the propagation path in the material is
known. The transducer pulse-echo wavelet, A(t), can
be represented as a sum of a number of Gaussian echo

y(t),

reflected from an isolated target in a homogeneous and

wavelets. An ultrasonic backscattered echo,
non-dispersive path, can be represented by equation (4)
which is equivalent to stating that y(t) is a sum of M
echoes [10]

M

y(£)= 25 B hE-1,)+V(8) (4)

m=1

where the reflectivity vector € ,=[ B, T,l

represents the amplitude and the time of flight of the
The v(t) in equation (4) stands for the
measurement noise and can be characterized as WGN

mth echo.
as described earlier. This model can represent M
number of backscattered echoes from a localized target
in a material assuming that the transducer pulse-echo
wavelet is invariant throughout the propagation path.
The model in equation (4) can be expressed as a
deconvolution problem where the objective is to

estimate the parameter vectors, &,, from the observed

backscattered echoes as follows

M
y(t):h(t)*{ Z} B,,,a(t—t,,,)}w(t) 5

1

Here, h(t) denotes the transducer pulse-echo wavelet,
v(t) is WGN, and the impulse train with & function
denotes the unknown system response. The objective
is to estimate &,, based on a knowledge of y(¢). It is

assumed that the desired system response is a spike

train composed of unknown amplitudes and time of
flights. Also, it is assumed that statistical knowledge
about the amplitudes and locations of the desired
system response 1s not

available. The model-based deconvolution problem is

described next.

2. Newton-Raphson Method

In the
algorithm has been developed and tailored to our

estimation procedure, the Newton-Raphson

specific problem for fast computation and convergence
to estimate the time of flight and the distance between

the tube wall and the ultrasonic sensors. The
Newton-Raphson method is given by [16]
UeeD_ g O _ 82U € o U(L)
¢ ¢ u( P ) RSN ©
where U(-) is the objective function, U1 1is the

convergence factor and T is the parameter to be
estimated. The

offers superior convergence properties, compared to the

Newton-Raphson algorithm usually

steepest descent algorithm [17]. The price is a
computationally more demanding algorithm, since the
Hessian needs to be computed and inverted [15][16].
The Newton-Raphson algorithm can be summarized as

follows [18]:

(a) Choose an initial guess, ¢ '®

(0)
(b) Compute V (U, which is, aU(gg )
(¢) Compute the Hessian, v fU, that s,
aZU(Q(O))
at?

(d) Adjust T'® to obtain ‘" by calculating,

W_, o [ 0@ U™

LR Y ] [ IS ]

UerD) g (R)

(e) Stop when U is sufficiently

small.
The estimation procedure can be performed numerically

Ul oy -Ul

M (N

g kD og o,

where ' is 1 multiplied by the inverse of Hessian and



ABUER - N2 BE R3GE L 4B 1% 20031 / 21

As indicated in
y(t),
superimposed

Al is an appropriately small value.

equation (5), the observed echoes, can be

represented by the M number of
pulse-echo wavelets and additive noise. We wish to
T, by
minimizing the MSE between the observed signals and
the calculated signals using the Newton-Raphson

method assuming the noise is WGN. Generally, the

estimate the amplitudes, B, and the locations,

MSE is a nonlinear function of the parameters, B and

T. LMS methods often converge to local minima of the

MSE  hyper-surface. We use the expectation
maximization (EM) algorithm along with the
Newton-Raphson method to minimize the Iocal

convergence problem.

3. Expectation Maximization Algorithm

The expectation maximization (EM) algorithm is used
to obtain the maximum-likelihood estimate (MLE) of
¢n [13]. The EM algorithm consists of

two major steps.

the parameter,

One is an expectation step and the
other is a maximization step [11]. The expectation is
with respect to the unknown underlying variables, using
the current estimate of the parameters and conditioned
upon the observations [19]. The maximization step
These

two steps are iterated until the estimate converges.

then provides a new estimate of the parameters.

However, the EM algorithm has a parallel computing
structure which means that the expected signals are
computed using the current estimate of parameter sets
and the observed data at each step of the algorithm.
After that, the
computed using those expected signals.

corresponding parameter sets are
The parallel
affect the
procedure.

computing  structure may sometimes

convergence rate of the estimation
Alternatively, the parameter sets can be updated right
after the maximization step without waiting for the
This step

will incorporate the current estimated parameter vectors

other parameter vectors to be calculated.

immediately into the expectation step and result in
This method
generalized EM algorithm and for the case of WGN,
this method is known as the space alternating
generalized EM (SAGE) algorithm [13]. Similar to the
EM algorithm, the SAGE algorithm involves estimating

faster convergence. is known as the

an expected signal for each echo and then computing
the MLE of the corresponding parameter set using the
expected signal and the current value of parameters

[12]. The flowchart of the algorithm is given in Figure
8. The SAGE algorithm solves the problem relating to
the estimation of the parameters associated with M
echoes by solving a one-echo estimation problem at
each iteration [20].

Start with an initial value
for parameter vectors

®
Em, m=12,...M
Set m=1

l

Expectation-Step
Estimate unobserved data

‘o

using the parameter vector

®
Em , m=12,..M

|

Maximization-Step No
likelyhood m=m+1

C the

P

No of the parameter vector, E(k;l)
m=1 using the estimated data

l ioed |

vectors are up |

Check if all the p

Yes

Check the convergence criterion
Set k=k+1

Yes

STOP

Fig. 8. Flowchart of the SAGE Algorithm

speed of the SAGE
algorithm depends on the convergence and speed of the
in which the
algorithm is employed.

However, the convergence and

maximization step Newton-Raphson
The convergence depends on
the initial starting value and the degree of tendency to
get stuck at local minima. The problem of convergence
to a local minimum can be avoided by perturbing the
solution and iterating again using the Newton-Raphson
the global

in any direction

algorithm to continue the search for
minimum. If the MSE is reduced
among those tries, then the direction is chosen to keep
searching for the global minimum. However, if there is
no difference then the current minimum value is
accepted as the global minimum. The convergence
factor can be determined by inspecting the periodicity
of the error function. The period of the local minima is
close to the backscattered echo period, in other words,
the inverse of the center frequency, f., for a single
Gaussian echo or the inverse of the largest center
frequency when there are multiple Gaussian echoes can
be the period of the local minima. Therefore, in order
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to avoid the local minimum value, can be

1
2( fC) max
chosen as the convergence factor, where the f. - 1s

the maximum center frequency among the center
frequencies of multiple Gaussian echoes which compose
the observed signal. The global search procedure should
be performed in the Newton-Raphson algorithm to
make sure the global convergence is reached in the
maximization step. To summarize, the SAGE algorithm
for estimating the amplitude, B, and location, T, of the

backscattered echoes involves the following steps.

Step 1. Start with making an initial guess for
FO_[p© 1O
=amplitude, and T=time of flight. Set k=0

number).

reflectivity  vector, where, B

(iteration

Step 2. (Expectation Step) Compute
~ 1 M
X W=s(2 W) pr{v- st )
where, s(Z,)=B_h(t-1,) , and
S pn={Bm Tl

Step 3.
vector using the Newton-Raphson algorithm coupled

(Maximization Step) Iterate the parameter

with the global search procedure:

& V= arg ; min || /i,,(,k)-s(ém)llz

and set & (F=g v

Step 4. Set m—m+1 and go to step 2 unless m>M

Step 5. Check
H z (k+1) _ z (k)“<

stop, otherwise go to step 6.

convergence criterion: if

tolerance, then go to step 7 and

Step 6. Set m=1, k—k+1, and go to step 2.

Step 7. The estimated parameter vector is &.

The model order, M, is assumed to be one in the
expectation step and the Newton-Raphson method is
step 3, the
maximization procedure using the Newton-Raphson

used in the maximization step. In

method can be implemented numerically with respect to
the mth amplitude, B,, and the mth time of flight, T,,

respectively,

[ J T S i
B,(:.U: ﬂmm‘r . Bm=B o' ~8p ,AB_IW Bmif ot (8)

Q Q

m e e g

T )

(o) _ (k)
T, 0=t -

where Q, is || X %-s( {m)llz, [ is p multiplied

by the inverse of Hessian and AB,, At,, are

appropriately small increments in the values of B, and

T,, respectively. In this algorithm, making a good
initial guess is important to obtain fast convergence.
When the model order is one, (M=1), a reasonable
initial guess for TOF and the amplitude would be the
time corresponding to the middle of the echo, and a
peak value of the echo,

value similar to the

respectively.
IV. Results of the classification

Using the SAGE algorithm, the amplitude, B, and the
location, T, have been estimated. Figures 9 through 13
show the deconvolution results for cracks while figures
14 through 18 show the results for deposits. The
estimated amplitude and TOF values are listed in tables
1 and 2 for cracks and deposits respectively. The pixel
distance between ID (dotted stem) of the tube and the
desired system response (solid stem) also has been
listed in the tables so that it can be used as a basis of
classification between cracks and deposits.
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Fig. 9. Deconvolution results for cracks: (a)68%,

(b)result for (a), (c)47%, (d)result for (c)
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Fig. 11. Deconvolution results for cracks: (a)18%,

(b)result for (a), (c)31%, (d)result for {(c)

In each of the figures 9 through 18, (a) and (c)

represent the observed ultrasonic backscattered echoes
windowed around the echo from the ID of the tube and
the target response from the scatterer, (b) and (d)
represent the deconvolution results corresponding to the
signals shown in (a) and (c) respectively. From these
results, the % represents the amount of penetration of
the cracks or depth of the deposits with respect to the
thickness of the tube wall. The X~ and Y-axis for
each of the figures represent time and amplitude of the
signal respectively. The backscattered echo from a
crack and a deposit portion is windowed and applied to

the algorithm to estimate B and t. The dotted stem

240 260

2
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_(d)' ! ! " ' 5 I l ‘ ' I |
20 92 pixels T 1
086 100 120 140 160 11|;8& 200 220 240 260 280
Fig. 13. Deconvolution results for cracks: (a)l1%,

(b)result for (a), (c)20%, (dresult for (c)

represents the amplitude and position of ID of the tube
estimated and the solid stem represents the amplitude
and position of the desired system response estimated
from the model based deconvolution. From the B-Scan
image of the ultrasonic data, it is known that the
distance between ID and OD is approximately 89 pixels

with a 45° refraction angle at ID, therefore, the
estimated distance between the dotted stem and solid
stem can be used to determine if it is a crack in the
tube or a inhomogeneity in deposit layer. If the distance
is less than 89 then it is classified as a crack in the
tube, otherwise it is classified as a inhomogeneity in
deposit layer.
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Fig. 15. Deconvolution results for deposits: (a)18%, Fig. 17. Deconvolution results for deposits: (a)29%,

(b)result for (a), (c)8%, (d)result for (c)

This method may produce incorrect classification results
unless the position of the scatterer is estimated with
high resolution. The estimated B, T, and the distance
between ID of the tube and the target response are
listed in tables 1 and 2. The initial value of B and 1
for the iterations in the SAGE algorithm are chosen to
be the peak amplitude and the time of flight of the
input ultrasonic backscattered echoes respectively. The
SAGE algorithm is
steepest descent

number of iterations of the

relatively small compared to the
algorithm. This saves processing time since the SAGE
algorithm uses the information contained in the Hessian

while the steepest descent algorithm uses only the gra-

(b)result for (a), (c)45%, (d)resuit for (c)

dient information.

V. Conclusions

A novel approach to the classification of ultrasonic
(NDE)
The method uses a least

nondestructive evaluation signals has been
described in this thesis.
mean square (LMS) algorithm and the results obtained
using the new approach were described with those
alternating  generalized
expectation (SAGE)

conjunction with the Newton-Raphson method.

obtained using the space

maximization algorithm  in
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(b)result for (a), (c)38%, (d)result for (c¢)
Cracks ] Amp. 7 TOF Distance
68% 43.3010 132 52
47% 36.8673 201 67
15% 35.1328 278 89
I {
20% 21:1184 2?4 9&} f
1896 22.0650 177 93
31% 40.9272 ) 207 79 -
29% » 14.6779 7 197 78
7 54% 32.6396 242 74
11% 8.1381 B 273 83
20% 30.1390 272 92
Table 1. Estimated values of the amplitude, #, and

TOF,
for cracks

7, from the model based deconvolution technique

The classification has been performed using data from
the straight and bent portions of the tube.
obtained have been described with those obtained using

The results

a model based deconvolution approach. The transducer
pulse-echo wavelet has been modelled and estimated in
The observed
ultrasonic backscattered echoes are also modelled as the

terms of Gaussian echo wavelets.
convolution of the pulse-echo wavelet with the desired
system response. The amplitude and the time of flight
(TOF) of the desired

estimated

system response have been
alternating generalized
expectation (SAGE)
conjunction with the Newton-Raphson method. The

using the space

maximization algorithm in

scatterer location estimates are used as a basis for cla-

F)eposits Amp. TOF ]?js:tance -
| 45% | 339559 | 198 | 100 |
 40% | 264823 193 | 85
18% . 290457 | o1& | 102
IR 89|
109 | 183612 | 205 %
7% 219343 | 200 . 93
29% | 259780 245 | 101
g% | 16T |22 T
3% 24131 248 %5 |
38% | 136415 216 o1 |

— ——d

B, and

7, from the model based deconvolution technique

Table 2. Estimated values of the amplitude,
TOF,

for deposits

Additional work

focused on reducing the computation time.

ssification. in the future can be

HEAAE 2002 12. 18 T 12003, 1. 19

V. References

(11 W. H. Hayt, Jr,
McGraw-Hill Book Company, New York, 1989.

Engineering Electromagnetics,

[2] D. E. Bray, R. K. Stanley, Nondestructive

Evaluation, CRC Press Inc., Boca Raton, 1997.

(31 L. wW.
Nondestructive
Corporation, New York, 1998.

Schmerr, Jr., Fundamentals of Ultrasonic

Evaluation, Plenum Publishing

[4] Nondestructive Testing Encyclopedia, The e-Journal
of Nondestructive Testing, last viewed June 2001,
Available at http://www.ndt.net/article/az/ut_idx.htm.

[5] Nondestructive Testing Encyclopedia, The e-Journal
of Nondestructive Testing, last viewed June 2001.,

[6] A. Khan, Defect Classification for Steam Generator
Tubes
Nondesstructive Techniques, M. S. Thesis, fowa State
University, 2001.

of a Nuclear Power Plant using Ultrasonic



26 / EM3 LMS algorithm& ©|&3te] 253 A APA Mse £7E 571 A& M2 Hoy

[7] M. Feder, E. Weinstein, Parameter Estimation of
Superimposed Signals using the EM Algorithm, [EEFE
Transactions on Acoustic Speech Signal Processing,

vol. 36, no.4, pp. 477-489, April 1983.

[8] J. A. Fessler, A. O. Hero,
Generalized Expectation Maximization Algorithm, IEEE

Space Alternating

Transactions on Signal Processing, vol. 42, no. 10, pp.
2664~2677, October 1994.

[9] R. Demirli, J. Saniie, Model-Based Estimation of
Ultrasonic Echoes, Part I
IEEE Transactions on Ultrasonics, Ferroelectrics, and
48, no. 3, pp.787-802, May

Analysis and Algorithms,
Frequency Control, vol.
2001.

[10] R. Demirli, J. Saniie, Model-Based Estimation of
Part II: Nondestructive Evaluation
IEEE Transactions on

Cltrasonic Echoes,
Applications, Ultrasonics,
Ferroelectrics, and Freguency Control, vol. 48, no. 3,

pp. 803-811, May 2001.

[11] R. Xing, Ultrasonic NDE signal classification on

steam generator tubes, AMLS. Thesis, Iowa State

University, 2000.

[12] D. R. Prabhu, M. N. Abedin, W. P. Winfree, E. L
Madaras, Disbond detection through ultrasonic signal
artificial
International Joint Conference on Neural Networks,
Vol.2, pp.906, 1991.

classification using an neural network,

[13] R. Schalkoff, Pattern Recognition, John Wiley &
Sons, Inc, New York, 1992.

[14] J. S. DaPonte, J. Gelber, M. D. Fox, Statistical
classification of ultrasonic image texture, Proceedings
of the 15th Annual Northeast

Conference, pp.121-122, 1989.

Bioengineering

[15] J. M. Mendel, Optimal Seismic Deconvolution: An
Estimation-Based Approach, NY: Academic Press,
1983.

[16] S. M. Kay, Fundamentals of Statistical

Processing, Prentice-Hall, Englewood Cliffs, 1993.

Signal

[171 V. Solo, X. Kong,
Algorithms, Prentice Hall, Englewood Cliffs, 1995.

Adaptive Signal Processing

[18] P. S. R. Diniz, Adaptive Kluwer

Academic Publishers, Norwell, 1997.

Filtering,

[19] T. K. Moon, The expectation-maximization

algorithm, IEEE Signal Processing Magazine, pp.
47-60, Nov. 1996.

[20] A. M. Sabatini, A digital signal processing
technique  for  ultrasonic  signal modeling and

classification, IEEE Transactions on Instrumentation

and Measurement, Vol.50, No.1, pp.15-21. Feb. 2001.

AY (Daewon Kim)
F&Ea
1993 2€9 Fddistn Hzxjgte
1993 19 - 199341 10¢¥ 4 A9
199611 5¢9 University of

Southern California (M.S.)
2002x 59 Towa State University (Ph. D.)
20021 549 - A AR FAA T HJATFH
BAEk A3, FFEE, B4

O 1= 1,
Network, Ultrasonic NDE 413 # &]

(Zshb

Neural




