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Bayesian Image Reconstruction Using
Edge Detecting Process for PET

Jong Seok Um'

ABSTRACT

Images reconstructed with Maximum-Likelihood Expectation-Maximization (MLEM) algorithm have
been observed to have checkerboard effects and have noise artifacts near edges as iterations proceed.
To compensate this ill-posed nature, numerous penalized maximum-likelihood methods have been
proposed. We suggest a simple algorithm of applying edge detecting process to the MLEM and Bayesian
Expectation-Maximization (BEM) to reduce the noise artifacts near edges and remove checkerboard
effects. We have shown by simulation that this algorithm removes checkerboard effects and improves
the clarity of the reconstructed image and has good properties based on root mean square error (RMS).
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1. INTRODUCTION

Statistical positron emission tomography (PET)
image reconstruction methods produce improved
spatial resolution and variance property over con—
ventional filtered back-projection methods through
accurate physical and statistical modeling. In 1982,
Shepp and Vardi proposed a Poisson model for
PET, known as MLEM algorithm [1]. Even though
MLEM is a theoretical based approach, images re~
constructed with MLEM algorithm have been ob-
served to have checkerboard effects and have large
distortions near edges as iterations proceed. To
compensate this ill-posed nature, numerous penal—
ized maximum-likelihood methods have been pro-
posed which are known as BEM. Green proposed
a MAP (Maximum a Posteriori) algorithm which

has non-negative image result and caused con-
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vergence issues [2]. A modified MAP proposed by
Lang was computationally expensive [3]. A fast
MAP method based on ordered subsets (OS) was
proposed by De Pierro and Yamagishi [4]. The OS
idea is to use only one subset of the measurement
data for each update instead of the total data. A
class of OS algorithm has shown significantly ac—
celerated convergence. Ahn and Fessler proposed
a relaxed OS algorithm based on the OS-EM algo—
rithm [5]. However in those OS based methods,
there are some uncertainties as to how the subsets
are to be chosen.

MLEM algorithm have been observed to become
noisy and have noise artifacts near edges as iter-
ations proceed. Introducing a priori probability,
BEM prevents the occurrence of checkerboard ef-
fects in the image. However, images obtained from
BEM have been blurred near edges since BEM
uses all the neighborhood pixels. In this paper, we
suggest a simple algorithm of applying edge de-
tecting process to the MLEM and BEM to reduce
the noise near edges. Once a neighbor pixel is con-
firmed as the edge element through edge detecting
process, this pixel is not considered from re-
constructing model. We use clique to remove this
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pixel from reconstructing model. We have shown
by simulation that this algorithm improves the re—
constructed image and:reduces MSE compare to
MLEM and BEM.

Section 2 describes the Poisson model of the
PET and reconstructing algorithms, MLEM and
BEM. In Section 3, we propose LEM and LBEM
to which the edge detecting process is applied to
MLEM and BEM respectively.

2. MODELING FOR THE PET

2.1 Likelihood for the emission counts

The data for PET consist of a véctor of counts
detected in the d-th detector tube = *(d), d=1.2,
-, D, where D is the total number of detector
tubes. Let A(d) be the emission intensity at a point
b In the image, #=12, ', B, where B is the
number of boxes in the image. Usually we choose
a box as a pixel in the image. Assuming #»*(d)
as Poisson distribution with parameter \*(d), op-
timization criteria is to maximize likelihood
function. Let #(d, d) be the random variable de-
noting the number of radioactive emissions occur-
ring In the pixel & and detected at the tube d.
Regarding n(b,d) as unobserved data and #*(d)
as observed data, EM algorithm is applicable to
find A(b),
lihood function p(;: I%). Let p(b,d) be the condi-
tional probability of detecting an emission in tube d
emitted from pixel b. Then #*(d), the total number

of emissions detected in tube , has Poisson dis—

B
tribution with mean A*(d)= ;l?\(b)p( b, d) . Here

b=12, -, B, which maximize like—-

p(b,d)'s are assumed the known non-negative
constants. It depends on various factors: the geom-
etry of the detection system, the activity of the iso-
tope and exposure time, and the extent of attenu-
ation and scattering between sources and
detectors. Here we estimate p(b, d) as the angle

of view from the center of the pixel & into tube

d . Log of likelihood function of the Poisson model

is as follow

)
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Here X T=(A(1), A(2), -, M(B)). Applying
EM algorithm to equation (1), we have the follow-
ing iterative formula.

wow(ry — sl (1 (d)p(bd)
NIB) = X Bl g @)
bfz::]'\ (B)p(0',d)

Start with initial estimate of X °“ | satisfying
Mb)>0, b=1,2,, B.If X ° denotes the cur-
rent estimate of _)\), define a new estimate A "¢
by equation (2). If the required accuracy for nu-
merical convergence has been achieved, then stop.

Otherwise, continue to update x using equation

(2).

2.2 priors for the emission intensity

Images reconstructed by using MLEM algo-
rithm have been observed to become noisy and to
have checkerboard effects. Also, these have noise
artifacts near edges as the iterations proceed .
Levitan and Herman use a Gaussian prior, called
the penalty function, to prevent the occurrence of
checkerboard effects {6]. Since the posterior is
sensitive only to the local properties of priors, we
use Markov Random Field (MRF) as prior. It is
known that Gibbs distribution is MRF, which has

following form

pX) < exp(— 3 VX)), ' 3

where ¢ is a clique and C is the collection of
all cliques. A local set of point ¢ is clique if
(b, b ) are neighbors for V (b, b )< ¢. Shepp and
Vardi suggest V.(X) as follow [1];
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where w,, is a weight and w,, =1 if (b, b )

are orthogonal neighbors, vV 1/2 if (b, % ) are di-
agonal neighbors and 0 otherwise. Bouman and
Sauer propose edge-preserving prior, called gener—~
alized Gaussian Markov random field (GGMRF)
[7], which allows the realistic edge modeling hav-

ing form

np = —H(Eab L+E

cEChY e

wylA (b)) = A (b )’k) (5)

+ constant
where 1<k<2. GGMRF includes Gaussian
MRF when %£=2. When k=1, it is similar to the
median pixel prior. By -choosing B8 and /% appro-

priately, we can avoid negative value of A "*(b).

2.3 Bayesian EM (BEM)

With GGMRF vprior, we have the posterior as

follow
Iup(j{ln En (d) 111(2/\(1) (b, d) ) 6)
=1
— ZZ/\(Z) V(/\) + constant
wher. V()= (Za Ak + Z L w O (h’)l")
Ccib.b' ) Ee

Here 7°=(n*(1), n*(2). =, n*(D)) T is the
detected X-ray counts at the detector tube.
Let 2(b,d)be an estimate of unobserved data

n(b,d) given observed data #*(d).

Then z(b,d) = E(n(b, Dln*(d)) =

n *(ar) B)\ n[d( b)ﬁ( b, d) (7)
2N d)

Using this result, we have the following result
at the expectation step

E(inp(N 7, n*)|n L) =

EZz(b,d)hl)\(b)p(b, ) (8)

d b

= YA Opbd) - V)

d b

Here ;z (n(1,1), n(1,2), -, n(1, D), n(2,1), - -, n(BD)T

is the random variable denoting the number of
radioactive emissions occurring in the pixel

=1,2,---,B and detected at the tube
d=1.2,.D a[,dj\}oh[:(/\old(l)tAu[r](2).’“.q/\old(3))'1"
is current estimates of A(bd), b=1,2,-, B. At

the maximization step, find a estimate of x which

maximize above equation and go back to

expectation step putting the estimate as N

direct
one-step-late (OSL) approximation proposed by

Instead of maximization, we use

[1]. We have the following iterative equation

D
?‘_,z(bd)

;jlp(b’d)+_am

}\new(b): B
N(B) | e
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In equation (9), if A(4) has a higher intensity

BV

compare to neighbors, an(b) | \— . becomes

positive and A ***(b) becomes smaller. If A(b) has

a lower neighbors,

avin)

(D) | .« becomes negative and A "®*(%)

intensity compare to

becomes larger. Thus BEM has smoothing effects.
Shepp and Vardi use Bayesian reconstruction for
PET and there are noise artifacts in the re-
constructed image near edges [1].

3. BAYESIAN EM WITH EDGE-
DETECTING PROCESS (LBEM)

The objective of the edge detecting process is
to detect the presence and identify the location of
intensity changes in an image and then to eliminate
the pixels having edge element from neighborhood.
Let Kb,86) =

between pixel & and &,

1 if there exists an edge element
0 if not. We use the hi-
erarchical model for the priors. Then edge-pre-
serving priors with edge detecting process has the

following form
(X, D wexp{ — V(XD - vy(D)}, (10)

Here 1= (1(1,2),1(1,3),-, 1L B),1(2,3), - 1(B—1,B)) 7
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denotes edge elements between pixel & and &,
where b+b. p(X, 1) is a hierarchical prior for
X and 7. Conditional prior of x given 7 is

given in equation (11).

ViR = Bk(zza”}\(b)k+ c;c (b%ec
(1= Kb, & Nwyy A (8) = A(5) )

Geman and Geman use clique of size four to
construct V2(7) [8]. Applying EM algorithm with
the prior in equation (10) and Poisson likelihood
function in equation (1), we have the following
iterative formula.

() = 2 ‘Z(«bd) (12)
gp(l),dn H‘;‘A(E\bl)l) i A=W,,:,M'
Kb, )" =1 or 0 which maximize
XL Zyw (13)

Iterative formular for LBEM in equation (12) in—
cludes edge elements. If A(d) has a higher in-
tensity because of edge relation with some. neigh-

oV, (X11)

boring pixels, thenm)—

I'y . ya,—u becomes

small and A **“(b) changes a little. Smoothing ef-
fect of BEM is removed in LBEM. Edge elements
are determined to maximize the posterior proba-

bility N, DLV o 8S given in equation (13).

Here we propose to determine X4, 4) using
empirical distribution of the difference of the pixel
intensities of & and b". Here is the procedure for
the edge detecting process. We call it as an empiri—
cal edge detecting process. First, we consider the
clique of order 2 with size four and four types of
pair interactions: horizontal, vertical, right-skewed
diagonal and left-skewed diagonal. Let F,; be the

empirical distribution of &;(b,6") with (5,5 ) € ¢
where d;(b,b') is the difference of the two pixel
1,2,3,4.
Second, determine the p; which is the proportion

intensities of 7type pair interaction, ¢ =

of pixels having 7type edge relations in the image.

The p; is determined by examining the empirical
distribution of d,(b, b ). If there is the first point
from which the right side is flat, then p; is the
right-tail probability from this point. Third, find
(1— p,)"percentile point of F,, F7'(1—5,), and
determine (b, b )=11if d{b, &) = F;'(1—p,)
and 0 otherwise. The LBEM algorithm is as
follows.

Step 1: Apply BEM to the data with initial esti—
mate AW .

Step 2: Applying the empirical edge detecting
process to the result obtained after K iterations of
BEM, determine (b, 5").

Step 3: Calculate A\ "*(®) and go to Step 2 with
the data A "*(b) until it satisfies the convergence
criteria.

When this algorithm is applied to the result ob-
tained after K iteration of MLEM, we call it LEM
(MLEM with edge detecting process).

4. SIMULATIONS AND RESULTS

We study two-dimensional reconstruction. We
assume a single ring of radius V2 with 128 equally
spaced detectors around the phantom with
B =100=x100 and D=64x65. The phantom is
made up of 5 ellipses with 4 different emission in-
tensities A as 0, b, 10 and 15. Synthetic image, Fig.
1(a), was created by linearly mapping emission in-
tensities onto a linearly gray scale from 0 to 240.
We generate 10% emissions that agrees with the
Poisson model. The details of the data generation
methods are as in Shepp and Vardi [1]. The histo-
gram of the 10° counts drawn from the phantom
of Fig. 1(a) at a rate proportional to A(d) is in
Fig. 1(d). The displays in Fig. 1 and Fig. 2 were
created by linearly mapping each estimated in-
tensities A () onto a linearly gray scale from 0
to 255. We use the uniform values as initial esti-
mate of X. Fig. 1(b), (c), (e) and (f) are the results
of the MLEM, BEM, LEM and LBEM algorithm



Bayesian Image Reconstruction Using Edge Detecting Process for PET 1569

after 32 iterations respectively. Fig. 1(b) has
checkerboard effects as expected. To apply BEM,
B=0.01, £#=1.05 and

b=1,2,-,B as the parameter values for the

we use a,=0 for
prior. Checkerhoard effects are suppressed in Fig.
1(c). The reconstructed images are settled down
around 20 iterations according to our simulation.
However, it shows noise artifacts around edges.
We adapt the empirical edge detecting process to
the result of MLEM and BEM after 16 iterations
respectively. We choose K=16. The result of LEM
after 32 iteratons (including 16 iteration of MLEM)
shows suppression of the noise around edges.
Since empirical edge detecting process introduce a
prior in the model, this algorithm has smoothing
effects on the image except edges.

' ca> ce> 343

Fig. 1. (a) Synthetic image (b) MLEM after 32
iterations (¢) BEM after 32 iterations (d)

histogram of 10° emissions (e).(f) LEM
and LBEM after 32 iterations resp.

| ‘ ;

Fig. 2. (a) Synthetic image (b) MLEM after 64
iterations (¢) BEM after 64 iterations (d)

histogram of 10° emissions (e),(f) LEM
and LBEM after 64 iterations resp.
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Fig. 3. Line plot of synthetic, histogram, MLEM
and BEM through 44th column.
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Fig. 4. Line plot of synthetic, histogram, LEM and
LBEM through the 44th column.

The result of LBEM after 32 iterations
(including 16 iteration of BEM) shows improve—
ment around edges. The results of applying em-—
pirical edge detecting process (LEM and LBEM)
show clear edge elements compare to the result of
MLEM and of BEM. The differences between
Fig.1(b), (¢) and Fig. 1(e), (f) occur at the edge
points. The results of 64 iteration are given in Fig.
2. Fig. 2(a), (d) are the same as Fig 1.(a), (d). The
images in Fig. 2(b), (c), (e) and (f) are the results
of the MLEM, BEM, LEM and LBEM algorithm
after 64 iterations respectively.

The reconstructed image with MLEM tends to
get worse as the iterations go on. The results of
LEM and LBEM show the clear improvement in
the noises and edges. To check the accuracy, we
draw a line plot of the 44th column through the
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Fig. 5. Root mean square error of MLEM, BEM,
LEM and LBEM

v axis of the reconstructed images obtained after
64 iterations. In Fig. 3, the line plot of synthetic,
histogram, MLEM and BEM are drawn. In Fig. 4,
the line plot of synthetic, histogram, LEM and
LBEM are drawn. The x-axis of Fig. 3 and Fig.
4 is the pixel location of y coordinate at x=44 and
y-axis is the gray level. These show that MLEM
has the noise artifacts and BEM suppresses noise
artifacts but has the smoothing effect at the edges.
LEM and LBEM detect the edge elements correctly
at the edges. We compare root mean square error
(RMS) as an overall measure of reconstruction

accuracy.

ﬁ](x(b)—i(b))z
RMS =y *=1 B (14)

In Fig. 5, RMS of MLEM is increased as iter—
ations go on. This indicates that reconstructed im-—
age is deteriorated by noise as iterations go on.
Since BEM has smoothing effects, RMS 1is
decreased. RMS of LEM and LBEM are decreased
until 32 iterations and then those are stabilized as
iterations proceed. Since priors introduce blurring
effects, RMS of BEM is smaller than that of LEM.
Because of edge elements, there is not much changes
in the reconstructed imagés as iterations proceed.

5. CONCLUSIONS

In this paper we have proposed an edge detect-

ing process for MLEM and BEM, we call LEM and
LBEM respectively, for image reconstruction of
PET. These algorithms suppress the checkerboard
effects occurring in the MLEM algorithm and
overcome the smoothing effects near edges occur—
ring in the BEM. Based on RMS, the reconstructed
images using these algorithms have become stable
as iterations proceed. Since priors introduce blur-
ring effects, RMS of BEM is smaller than that of
LEM. Appropriate choice of priors is important

.since the results are sensitive to the priors.
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