• 제목/요약/키워드: Mathematical theory

검색결과 2,191건 처리시간 0.027초

MAYER-VIETORIS SEQUENCE AND TORSION THEORY

  • Payrovi, Sh.
    • 대한수학회보
    • /
    • 제37권3호
    • /
    • pp.419-428
    • /
    • 2000
  • This work presents a new construction of Mayer-Vietoris sequence using techniques from torsion theory and including the classical case as an example.

  • PDF

K-THEORY OF C*-ALGEBRAS OF LOCALLY TRIVIAL CONTINUOUS FIELDS

  • SUDO TAKAHIRO
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.79-92
    • /
    • 2005
  • It is shown that the K-theory of the $C^{\ast}$-algebras of continuous fields on locally compact Hausdorff spaces with fibers elementary $C^{\ast}$-algebras is the same as the K-theory of the base spaces. We also consider the slightly generalized case. Furthermore, we give some applications of these results.

Margolis homology and morava K-theory of classifying spaces for finite group

  • Cha, Jun-Sim
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.563-571
    • /
    • 1995
  • The recent work of Hopkins, Kuhn and Ravenel [H-K-R] indicates the Morava K-theory, $K(n)^*(-)$, occupy an important and fundamental place in homology theory. In particular $K(n)^*(BG)$ for classifying spaces of finite groups are studied by many authors [H-K-R], [R], [T-Y 1, 2] and [Hu].

  • PDF

Excisions in hermitian K-theory

  • Song, Yong-Jin
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.585-593
    • /
    • 1996
  • We make the definition of hermitian K-theory for nonunital rings which makes as many senses as possible. We next show that the excision property in rational hermitian K-theory implies the nullity of rational $H B^-$-homology which is the antisymmetric part of Bar homology.

  • PDF

Davydov의 활동이론에 기반한 초등학교 수학교과서의 내용 분석 (An Analysis of Mathematics Textbook's Contents Based on Davydov's Activity Theory)

  • 한인기
    • East Asian mathematical journal
    • /
    • 제29권2호
    • /
    • pp.137-168
    • /
    • 2013
  • In this paper we study activity theory and Davydov's learning activity theory. We analyze brief history of activity theory in Russia, structure of human activity, and Davydov's studies in activity theory. Especially we analyze Davydov's 1st grade mathematics textbook, and try to investigate embodiment of Davydov's learning activity theory in his mathematics textbook.

수학적 지식의 구성에 관한 연구 (A Study on the Construction of Mathematical Knowledge)

  • 우정호;남진영
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제18권1호
    • /
    • pp.1-24
    • /
    • 2008
  • 본 논문에서는 수학적 지식의 구성에 대한 구성주의자들의 설명이 안고 있는 문제점을 드러내고, 이를 보완할 수 있는 방안을 모색하고자 하였다. 이를 위해 마음의 중층구조의 틀로 지식의 구성 능력과 구성 작용 간의 관계를 고찰하고, 수학적 지식의 구성은 수학적 지식이 반영하는 실재로서의 위층의 마음을 경험하고 드러내는 일로 규정하였다. 구조주의와 구성주의의 대립과 관련을 성리학에서 주리론과 주기론의 대립과 관련에 비추어 논하고, 수학적 지식의 구성은 수학적 지식의 구조를 구성하는 것이어야 함을 논하였다. 수학적 지식의 구조의 구성이 구체적으로 어떤 과정을 통해 이루어질 수 있는가 하는 문제에 답하기 위하여 본 논문에서는 폴라니의 인식론을 고찰하고, 수학화 이론과 역사-발생적 원리, 수학적 사고 수준 이론을 수학적 지식의 구조의 구성 과정에 대한 이론으로 재해석하였다. 끝으로, 수학적 지식의 구조의 구성을 위한 학생과 교사의 자세와 역할에 대하여 논의하였다.

  • PDF

수학 학습에서 도구의 역할에 관한 관점: 수학적 어포던스와 상황적 어포던스의 조정 (The role of tools in mathematical learning: Coordinating mathematical and ecological affordances)

  • 방정숙
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제12권3호
    • /
    • pp.331-351
    • /
    • 2002
  • It is widely recommended that teachers should actively mediate students' engagement with tools such as manipulative materials. This paper is to help to parse classroom life so that both social and psychological aspects are accounted for and coordinated. Building on the theory of affordances from ecological psychology and the activity theory from sociocultural perspectives, the main strategy of this paper is to view manipulative materials as simultaneously participating in social and psychological activity systems. Within these activity systems it is charted how both mathematical affordances related to the structure of mathematical concepts and ecological affordances related to socially situated classroom practices need to be considered by teachers in effective mediation of mathematical manipulatives. This paper has three major sections. The first section develops a theoretical extension of Gibson's theory of affordances from natural to social environments. The second section introduces mathematical and ecological affordances using empirical data from a grade two elementary school classroom. The third section illustrates the need of coordinating the two affordances as embedded in different activity systems.

  • PDF

RECENT RESULTS AND CONJECTURES IN ANALYTICAL FIXED POINT THEORY

  • Park, Se-Hie
    • East Asian mathematical journal
    • /
    • 제24권1호
    • /
    • pp.11-20
    • /
    • 2008
  • We survey recent results and some conjectures in analytical fixed point theory. We list the known fixed point theorems for Kakutani maps, Fan-Browder maps, locally selectionable maps, approximable maps, admissible maps, and the better admissible class $\cal{B}$ of maps. We also give 16 conjectures related to that theory.

  • PDF