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MARGOLIS HOMOLOGY AND MORAVA K-THEORY
OF CLASSIFYING SPACES FOR FINITE GROUP

JUN-SIM CHA

1. Introduction

The recent work of Hopkins, Kuhn and Ravenel [H-K-R] indicates
the Morava K-theory, K'(n)*(~), occupy an important and fundamen-
tal place in homology theory. In particular K(n)*(BG) for classifying
spaces of finite groups are studied by many authors [H-K-R], [R], [T-Y
1,2] and [Hu].

In this paper, we note that the Margolis homology H(H*(BG ;Z/p),
Q.) relates deeply K(n)*(BG) if the exponent of G is small. We
study K(n)*(BG) for group |G| = p* and exponent p, p > 3. Such
K(n)*(BG) are given by Tezuka-Yagita [T-Y 2] by using BP-theory
and BP*(BG) ®pp+ K(n)* ~ K(n)*(BG). However we use here only
Atiyah-Hirzebruch spectral sequence for K(n)* theory. Quite recently
Leary decided the multiplicative structure of H*(BG ;Z/p) [Ly 2| by
using the cohomology of group G which is the central product of G and
S'. Using this G and results of Ravenel [R] and Hopkins-Kuhn-Ravenel
[H-K-R], we know the Atiyah-Hirzebruch spectral sequence completely
e.g. Eyn_o o~ EZ*. In particular we correct some inaccuracy of results
in Tezuka-Yagita [T-Y 2]. The case p = 2 is studied in [C].

2. The nonabelian p-group of the order p?

Let G be a nonabelian group of |G| = p*. Then G is one of the
following groups for p > 3;

E=<abcla® =t =c" =1, [a,b] = ¢,[a,c] =[b,c] =1>
M=<abla® =t =1, [a,b]=a’ >
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when p = 2, E ~ M and we denote it by D ; the dihedral group, and
there is the another group @ ; the quoternion group @ =< a,b|a* =
b* =1, [a,b] = a® = b* >.

For each group G, there is a central extension

(2.1) 1—Z/p—G—2Z/pdZ/p—1
which induces the spectral sequence
E;" =H"(B(Z/p®©Z/p; Z/p), H'(B(Z/p; L/p))) = H"*(BG; Z/p).

When p > 3, the above Ej-term is E3"" = S @ A2 ® Z/p[u] ® A(z) with
Sz = Z/ply1,y2], A2 = A(z1,22),Bxi = yi, Bz = u. For p = 2, we see
E}* = 84 @ Z/2[z] with S} = Z/2[z1,x2]. It is known [Ls|, [Q], [T-Y
1] that

19 for G = E, D

daz = { 7122 + 32 for G=M
T1T9 + zf + xé for G = Q.
Then by the Cartan-Serre transgression theorem, the next differential
are
dsu = d3Bz = Bdaz = B(x122) = yox1 — a2z for p > 3,
d3z? = ziry 4 2123 for p =2
and by the Kudo’s transgression theorem, we know
dap-1)+1 (w71 @ dyu) =BPdsu = B(yhz1 — yiz2)
=ybz; — ylzs forp > 3.
By using this spectral sequence, we get ;

LEMMA 2.2. When G = D, H*(BG; Z/p) ~ E3 ~ S3/(z122) ®
Z/2[2%).
Proof. Since dyz = z122, we get Ey ~ S /(z172) ® Z/2{2?]. From

d3z® = 1‘%.1‘2 + xla:% = 0 mod(z122), we know E; ~ E,,. O

For other cases, the spectral sequence is not easy. and hence we
consider the another spectral sequence in the next section.
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3. The calculation of H*(BG; Z/p)

First we recall the calculation of H*(BG; Z/p) by P. Kropholler
and I. Leary [Ly 1], [Ly 2]. Let G = G x <> S! be the central product
of G and S'. Then there is the exact sequence

1—S' G —Z/padZip—1
which induces the spectral sequence
E;" = H*(B(Z/p® Z/p; Z/p), H*(BS'; Z/p)) = H*(BG; Z/p)
where E;™ = S ® A2 @ Z/plu] and dsu = y21 — y) 2.

Hence the Ej3-term is given by
S2 ® Az /(dsu) j=0modp
Ey* ~{ H(S;®Ag, dsu) 1<j<p—2modp
Ker (dsu) j=p-—1modp.
We first compute the above homology ;
LEMMA 3.1. H(Sz ® Aa, dgu) ~ Z/p{fl:l.’l:g}.
Proof. Let f = ag + a121 + azx2 + a122122 be in Kerdsu. Then
(3.2)
0 = (dsu)f = (y221 — y122) (o + a1T1 + azxz + ajpx122)
= (Y1 — Y1 T2)ag + (Y202 + y1a1 )z 1 22.
Hence ap = 0, a1 = —y2a’ and ay = y1d', that is, f = (y2z1 —y122)a’ +

a1zz1z2. Since ImB(z,y) is expressed as the right hand side formula
of (3.2), we get Lemma 3.1. O

We see that d,.{z1z2u’} = 0 for 0 < ¢ < p—1 since {z1z9u'} is
y1 torsion but S @ Az/(dsu) is not. Hence E* ~ E3" | Recall the
Kudo’s transgression

dap—1(v? ™! @ dyu) = yhys — yiye.

Since dyuzy = y12172 and dyp-1 (WP Q@y12122) = (Yy2 — 1y} )z, we
get dop 1 (WP @ z122) = (v] — ¥ y2)an.

In this paper, let us write grA = F if F' = ®3_oF;/F.4; for some
filtration A = Fy D F; D --- D F,. Then we can see;
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THEOREM 3.3. [Ly 2| grH*(BE; Z/p) ~ E3 ", ~ (A®B)®Z/p[u?]
with A = S2 ® A2/(B(z,y), B(z,y), B(y,y?)) and B = B2 p{z:
zou'} where B(w,v) = wivy — wavy.

Proof. First note dap-1(v?™! @ z122) = (3§ — yP lye)zy = B(z,y?)
modB(z,y) and dap_1(u? ™' ® dsu) = B(y,y”). Hence we get By
(A @ B) ® Z/p[u?], from Lemma 3.1. Since dzp41(u?) = Plda,(u) =
P'B(z,y) = B(z,y?) = 0, we know Ezp41 =~ Ee and we get the
theorem. [J

Next consider the fibering
G/G ~ §' — BG — BG.
This induces the spectral sequence
E;* = H*(BG; Z/p)® H'(S'; Z/p) = H"(BG; Z/p).

Since E;’i = 0 for 1 > 2, we get;

PROPOSITION 3.4. [Ls| Let z € H(S'; Z/p) be a generator. Then
grH*(BG ; Z/p) ~ H*(BG ; Z/p)/(d22) ® (Ker d22)z.

We can see B C Ker 222 and we get (for detailed products struc-
ture, see [Ly 2]);

THEOREM 3.5. [Ly 1] grH*(BE; Z/p) ~ ((A/(z122) ® B) ® (A" @
B)2) ® Z/p|uP], where AT is the positive degree parts of A.

4. Margolis homology of H*(BE'; Z/p)

Recall that the Milnor primitive derivation Qy, is defined by Qo = B
and @, = ’P”nQn_l - Q,l_lf'”". It is known that @, is a derivation
and Q2 = 0. We consider the homology (Margolis homology) defined
by the differential Q,, H(H*(BE; Z/p), Qn). Recall A = EX? =
So @ A2/(B(z,y), B(z,y"), B(y,y*)) in Theorem 3.3.

LEMMA 4.1. Each element f € A is uniquely expresse(j as f = o+
a171+arz2 +aizz1zz withag € S2/Bly,y?), a1 € S2/(B(y,y")/y1), az
€ Z/plyz] and ar2 € Z/p.

Proof. First note y;z122 = yo27 = 0 modB(z,y! = y221 — Y122
and similarly ypz122 = 0. Hence a1z € S2/(y1,y2) ~ Z/p. Next if
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a; = y1ay, then azz2 = y1ajz2 = abyzz1 modB(z,y). Hence we can
express a;Ty by azy. Since 0 = B(z,y?) — ¥ 7' B(z,y?) = yhar —

-1 -1 .
vz —yl (vex1 —yixe) = (¥f —vi w2)zr = (B(y,¥7) /1)1 in 4,
we get the Lemma. O

LEMMA 4.2. H(4,Q.) ~ S3/(B(y,y* )y} .45 ) ® Z/p{z122}.

Proof. The @}, operator on zjz3 1s

n n n n
—_ P _ (. 1
Qnzizs =y; T2 — y’z’ 1 = (13 - yg

- - nely 41 nelg41
= -’ Yy NVyaz1

“Hyaz

=0, since (7' — 2 y2 = B(y,v")/v1.

Let f be expressed as Lemmma 4.1. Then we have

(4.3) Qnf= (llyfn + azygn-

If f € KerQn, then (4.3) € Ideal B(y,y?) C Ideal(y1y2). Since a; €
Z/ply2], a2 must be zero. Hence aly{’" € Ideal B(y,y?) = yi(yh —
y?"'y,) and so a; € Ideal(y2 ™' — y?"'y,). Hence we can take a; = 0.
Therefore we get

KerQ, = {f|f = ao + aiga122}.

From (4.3), Image @,, is expressed as Ideal(yf",ygn) in S;. Thus we
get the Lemma. [0

It is well-known [Ls], [T-Y] that we can take Chern Classes Cp, C;
in H*(E) as elements {u?}, {z122u’}, that is, there is a representation
p: E - U(n) such that p*C; represents {z,zu'} where H*(BU(n)) =
Z/p[C1,Ca, -], |Ci] = 2i. Since H*(BU(n)) generated by even di-
mensional elements, all @, are zero and so are {u?}, {r1z2u'}. Hence
we get the following theorem.

THEOREM 4 .4. H(H*(BE‘: Z/p), Qn) ~ H((ADB)®Z/p[u], Qn)
~ (H(A,Qn) @ B) ® Z/p[u?).
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LEMMA 4.5. H(A/(z122), @) =~ S2/(B(y, %), ¥} +¥§ )-

Proof. Recall that @, (z122) =0 and y;z122 = 0 for ¢ = 1,2. From
Lemma 4.2, we get H(A/(z122), @,) = H(A, Qn)/(z122). O

THEOREM 4.6. grH(H*(BE; Z/p), Qn) S2/(Bly, )b yh )
®B) @ Z/pluP]/(y1uP , youP ,(z1z2u’ )uP ) G Z/pluP]{z1222}.

Proof. Let C' = grH*(BE; Z/p) in Theorem 3.5. Let F} = (A/(x1
z2)® B) @ Z/p[u”?]. Then we have the isomorphisms

H(Fy, Qn) = (H(A, Qu)/(z122) ® B) ® Z/p[v?]
H(C/F\, Qu) ~ H((A" @ B) ® Z/p[u”]z, Qn)
~ (H(4, Qn)* & B) @ Z/p[u?] ® {z}.
Next consider the spectral sequence
Ey=H(F, Q) ®H(C/F1, Qu) = H(C. Q).

Here we study d; = (J,. For this we consider in the spectral sequence
(2.1). In the spectral sequence we can prove that

Quly: @ 2) = yau?”
Qn(l'lilfz’lti Rz2)=2172® w?" T
Therefore the E;-term is computed
E; =(H(A, Q.)/(z122) & B)
B Z/pl’)/ (" yau?”  (Tr22u ") @ Z/p{erz22}[u”).

Hence we have the theorem by this spectral sequence.0]

5. Morava K-theory

The Morava I{-theory K (n)*(—) is generalized cohomology theory
with the coefficient K(n)* = Z/p[vy,v; ], |va| = —2p™ + 2. We con-
sider the Atiyah-Hirzebruch spectral sequence for Morava K-theory

E;* = H*(X; K(n)") = K(n)*(X).
It is known [Hu], [T-Y] that the differential dapr_1(2) = vn @ Qnz.

Hence we get

E;]’)* ~ N(n)* @ HH*X; Z/p), Q).
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THEOREM 5.1. gr(n)*(BE) ~ K(n)* @ H(H*(BE; Z/p), Q.).

Proof. From Lemma 4.2 and Theorem 4.4, H(H*(BE; Z/p), Qn)
is generated by even dimensional elements, hence E3" ~ Ex*. O

Revenel [R] showed that dimj(,) K (n)*(BG) is finite for each finite
group G. Hopkins-Kuhn-Ravenel {H-K-R] defined K(n)-theory Euler
character y, by

(52)  xa(G) = dimg(y)- K(n)*"*(BG) - dimge(n)- K(n)°Y4(BG).

For p-groups G, this Euler character can be described in term of con-
jugay classes of commuting n-tuples of elements in G.

Xn(G) = number of {(gi,--- ,gn)} |[g:,95] = 1, g: € G}/G

with the conjugate action ¢ - (g1, ,9a)} ~ (99197", - ,g9ng™").
They also showed (Lemma 5.3.6. in [H-K-R]) that y, is computed

inductively

(53) X,,(G) = Z X,,._I(CG(Q))
<g>
where < g > runs over conjugate classes in G and Cg(g) = {h €

G |[h,g] = 1} is the centralizer of g in G.

Now we consider K(n)*(BE). Recall H(gr(H*(BE; Z/p), Q) in
Theorem 4.4. If d,{z1222} = 0 for all r, then E," ~ E%* hence
dim g (n)- I{(n)*(BE) is infinite since ¢* # 0. This contradicts the result
of Ravenel. Therefore we know

(5.4) d{z1222} = vEu’? for some s with 2ps — 3 — 1 = 2(p” — 1)k.
LEMMA 5.5. dim(n) K(n)*(BE) = p" + p?™~1 — 3p"~1 4 &,

Proof. From Theorem 4.6, K(n)*(BE) has K(n)*-basis {y¥y}, ys,
Cl@uw?P(1<k<p",0<i<p 1<s<p-20<j<p* ) {u'?}
(0 £ h < s). Hence we see

dimg(n)e K(n)"(BE) = ((p" = Lp+ (p" = 1) + (p = 2))p" " +s

:p2n +p2n—l _ 3pn~l + s 0
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LEMMA 5.6. xn(E) =p?™ 4+ p?"~ ! —pn~L.

Proof. The conjugacy classes of E are < 1>, < C* >, < a'b*c' |0 <
! < p > and their centralizer are E, E,Z/p®Z/p, respectively. So from
(5.3)

Xn(E) = pxn-1(E) + (p* = )xn-1(Z/p & Z/p)
= pxa-1(E) + (p* = 1)p*" 2.

Hence we get this Lemma. O

From Lemma 5.5 and Lemma 5.6, we know sp = 2p™, hence k = 2.
Therefore dy(p2-1)+1{z1222} = vZu?*? . From Theorem 4.6, we know

Ejn_y=K(n)* @ HH(BE; Z/p); Qn) — Z/plu’{z1222}) /(u®").

Moreover, E:I’,f. _, is generated by even dimensional elements, so Eyp2 43
~ E. Thus we get;

THEOREM 5.7. [T-Y] grk(n)*(BE) ~ K(n)*(S2/(B(y, y*), v,

n—

¥ )@ L/p{Car . Cypmi} @ BIPIC)/(nCE T, (27T, GO
C¥"") with C, = uP, Ci = {my22u'}.

REMARK. There are misstype in [T-Y]. In this paper y;C}, should
n-—1

be yiC2"" and C;C2""" = 0 should be added. From [T-Y] we also
know the above grii(n)*(BE) is exactly K(n)*(BE) except for the
products of C; (1 <7 <p-—-1).
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