MARGOLIS HOMOLOGY AND MORAVA K-THEORY OF CLASSIFYING SPACES FOR FINITE GROUP

JUN-SIM CHA

1. Introduction

The recent work of Hopkins, Kuhn and Ravenel [H-K-R] indicates the Morava K-theory, $K(n)^*(-)$, occupy an important and fundamental place in homology theory. In particular $K(n)^*(BG)$ for classifying spaces of finite groups are studied by many authors [H-K-R], [R], [T-Y-1,2] and [Hu].

In this paper, we note that the Margolis homology $H(H^*(BG; \mathbb{Z}/p), Q_n)$ relates deeply $K(n)^*(BG)$ if the exponent of G is small. We study $K(n)^*(BG)$ for group $|G| = p^3$ and exponent $p, p \geq 3$. Such $K(n)^*(BG)$ are given by Tezuka-Yagita [T-Y 2] by using BP-theory and $BP^*(BG) \otimes_{BP^*} K(n)^* \simeq K(n)^*(BG)$. However we use here only Atiyah-Hirzebruch spectral sequence for $K(n)^*$ theory. Quite recently Leary decided the multiplicative structure of $H^*(BG; \mathbb{Z}/p)$ [Ly 2] by using the cohomology of group \tilde{G} which is the central product of G and S^1 . Using this \tilde{G} and results of Ravenel [R] and Hopkins-Kuhn-Ravenel [H-K-R], we know the Atiyah-Hirzebruch spectral sequence completely $e.g. E^*_{4p^n-2} \simeq E^*_{\infty}$. In particular we correct some inaccuracy of results in Tezuka-Yagita [T-Y 2]. The case p=2 is studied in [C].

2. The nonabelian p-group of the order p^3

Let G be a nonabelian group of $|G| = p^3$. Then G is one of the following groups for $p \ge 3$;

$$E = \langle a, b, c | a^p = b^p = c^p = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle$$

 $M = \langle a, b | a^{p^2} = b^p = 1, [a, b] = a^p \rangle$

Received July 5, 1994.

1991 AMS Subject Classification: 55N15.

Key words: Margolis Homology, Morava K-theory.

Supported by TGRC-KOSEF.

when p = 2, $E \simeq M$ and we denote it by D; the dihedral group, and there is the another group Q; the quoternion group $Q = \langle a, b | a^4 = b^4 = 1, [a, b] = a^2 = b^2 \rangle$.

For each group G, there is a central extension

$$(2.1) 1 \longrightarrow \mathbb{Z}/p \longrightarrow G \longrightarrow \mathbb{Z}/p \oplus \mathbb{Z}/p \longrightarrow 1$$

which induces the spectral sequence

$$E_2^{*,*} = H^*(B(\mathbb{Z}/p \oplus \mathbb{Z}/p \, ; \, \mathbb{Z}/p), \ H^*(B(\mathbb{Z}/p \, ; \, \mathbb{Z}/p))) \Rightarrow H^*(BG \, ; \, \mathbb{Z}/p).$$

When $p \geq 3$, the above E_2 -term is $E_2^{*,*} = S_2 \otimes \Lambda_2 \otimes \mathbb{Z}/p[u] \otimes \Lambda(z)$ with $S_2 = \mathbb{Z}/p[y_1, y_2]$, $\Lambda_2 = \Lambda(x_1, x_2)$, $\mathcal{B}x_i = y_i$, $\mathcal{B}z = u$. For p = 2, we see $E_2^{*,*} = S_2' \otimes \mathbb{Z}/2[z]$ with $S_2' = \mathbb{Z}/2[x_1, x_2]$. It is known [Ls], [Q], [T-Y 1] that

$$d_2 z = \begin{cases} x_1 x_2 & \text{for } G = E, D \\ x_1 x_2 + y_2 & \text{for } G = M \\ x_1 x_2 + x_1^2 + x_2^2 & \text{for } G = Q. \end{cases}$$

Then by the Cartan-Serre transgression theorem, the next differential are

$$d_3 u = d_3 \mathcal{B} z = \mathcal{B} d_2 z = \mathcal{B}(x_1 x_2) = y_2 x_1 - y_1 x_2 \text{ for } p \ge 3,$$

 $d_3 z^2 = x_1^2 x_2 + x_1 x_2^2 \text{ for } p = 2$

and by the Kudo's transgression theorem, we know

$$d_{2(p-1)+1}(u^{p-1} \otimes d_3 u) = \mathcal{BP} d_3 u = \mathcal{B}(y_2^p x_1 - y_1^p x_2)$$

= $y_2^p x_1 - y_1^p x_2$ for $p \ge 3$.

By using this spectral sequence, we get;

LEMMA 2.2. When G=D, $H^*(BG;\mathbb{Z}/p)\simeq E_3\simeq S_2/(x_1x_2)\otimes \mathbb{Z}/2[z^2]$.

Proof. Since $d_2z = x_1x_2$, we get $E_2 \simeq S_2/(x_1x_2) \otimes \mathbb{Z}/2[z^2]$. From $d_3z^2 = x_1^2x_2 + x_1x_2^2 = 0 \mod(x_1x_2)$, we know $E_2 \simeq E_{\infty}$. \square

For other cases, the spectral sequence is not easy, and hence we consider the another spectral sequence in the next section.

3. The calculation of $H^*(BG; \mathbb{Z}/p)$

First we recall the calculation of $H^*(BG; \mathbb{Z}/p)$ by P. Kropholler and I. Leary [Ly 1], [Ly 2]. Let $\tilde{G} = G \times_{\langle c \rangle} S^1$ be the central product of G and S^1 . Then there is the exact sequence

$$1 \longrightarrow S^1 \longrightarrow \tilde{G} \longrightarrow \mathbb{Z}/p \oplus \mathbb{Z}/p \longrightarrow 1$$

which induces the spectral sequence

$$E_2^{*,*} = H^*(B(\mathbb{Z}/p \oplus \mathbb{Z}/p\,;\,\mathbb{Z}/p),\,\,H^*(BS^1\,;\,\mathbb{Z}/p)) \Rightarrow H^*(B\tilde{G}\,;\,\mathbb{Z}/p)$$

where $E_2^{*,*} = S_2 \otimes \Lambda_2 \otimes \mathbb{Z}/p[u]$ and $d_3 u = y_2 x_1 - y_1 x_2$. Hence the E_3 -term is given by

$$E_3^{\star,2j} \simeq \begin{cases} S_2 \otimes \Lambda_2/(d_3u) & j = 0 \bmod p \\ H(S_2 \otimes \Lambda_2, \ d_3u) & 1 \leq j \leq p-2 \bmod p \\ Ker(d_3u) & j = p-1 \bmod p. \end{cases}$$

We first compute the above homology;

LEMMA 3.1. $H(S_2 \otimes \Lambda_2, d_3u) \simeq \mathbb{Z}/p\{x_1x_2\}.$

Proof. Let $f = a_0 + a_1x_1 + a_2x_2 + a_{12}x_1x_2$ be in $Ker d_3u$. Then (3.2)

$$0 = (d_3u)f = (y_2x_1 - y_1x_2)(a_0 + a_1x_1 + a_2x_2 + a_{12}x_1x_2)$$

= $(y_2x_1 - y_1x_2)a_0 + (y_2a_2 + y_1a_1)x_1x_2.$

Hence $a_0 = 0$, $a_1 = -y_2a'$ and $a_2 = y_1a'$, that is, $f = (y_2x_1 - y_1x_2)a' + a_{12}x_1x_2$. Since ImB(x,y) is expressed as the right hand side formula of (3.2), we get Lemma 3.1. \square

We see that $d_r\{x_1x_2u^i\}=0$ for $0 \le i \le p-1$ since $\{x_1x_2u^i\}$ is y_1 torsion but $S_2 \otimes \Lambda_2/(d_3u)$ is not. Hence $E_3^{*,*} \simeq E_{2p-1}^{*,*}$. Recall the Kudo's transgression

$$d_{2p-1}(u^{p-1} \otimes d_3 u) = y_2^p y_1 - y_1^p y_2.$$

Since $d_3ux_1 = y_1x_1x_2$ and $d_{2p-1}(u^{p-1} \otimes y_1x_1x_2) = (y_1^p y_2 - y_1y_2^p)x_1$, we get $d_{2p-1}(u^{p-1} \otimes x_1x_2) = (y_2^p - y_1^{p-1}y_2)x_1$.

In this paper, let us write $\operatorname{gr}\Lambda = F$ if $F = \bigoplus_{i=0}^{s} F_i/F_{i+1}$ for some filtration $\Lambda = F_0 \supset F_1 \supset \cdots \supset F_s$. Then we can see;

THEOREM 3.3. [Ly 2] $\operatorname{gr} H^*(B\tilde{E}; \mathbb{Z}/p) \simeq E_{2p+1}^{*,*} \simeq (A \oplus B) \otimes \mathbb{Z}/p[u^p]$ with $A = S_2 \otimes \Lambda_2/(B(x,y), B(x,y^p), B(y,y^p))$ and $B = \bigoplus_{i=0}^{p-2} \mathbb{Z}/p\{x_1 x_2 u^i\}$ where $B(w,v) = w_1 v_2 - w_2 v_1$.

Proof. First note $d_{2p-1}(u^{p-1}\otimes x_1x_2)=(y_2^p-y_1^{p-1}y_2)x_1=B(x,y^p)$ modB(x,y) and $d_{2p-1}(u^{p-1}\otimes d_3u)=B(y,y^p)$. Hence we get $E_{2p+1}^{*,*}\simeq (A\oplus B)\otimes \mathbb{Z}/p[u^p]$, from Lemma 3.1. Since $d_{2p+1}(u^p)=\mathcal{P}^1d_{2p}(u)=\mathcal{P}^1B(x,y)=B(x,y^p)=0$, we know $E_{2p+1}\simeq E_{\infty}$ and we get the theorem. \square

Next consider the fibering

$$\tilde{G}/G \simeq S^1 \longrightarrow BG \longrightarrow B\tilde{G}.$$

This induces the spectral sequence

$$E_2^{*,*} = H^*(B\tilde{G}; \mathbb{Z}/p) \otimes H^*(S^1; \mathbb{Z}/p) \Rightarrow H^*(BG; \mathbb{Z}/p).$$

Since $E_2^{*,i} = 0$ for $i \ge 2$, we get;

PROPOSITION 3.4. [Ls] Let $z \in H(S^1; \mathbb{Z}/p)$ be a generator. Then $grH^*(BG; \mathbb{Z}/p) \simeq H^*(B\tilde{G}; \mathbb{Z}/p)/(d_2z) \oplus (Ker d_2z)z$.

We can see $B \subset Ker x_1x_2$ and we get (for detailed products structure, see [Ly 2]);

THEOREM 3.5. [Ly 1] $grH^*(BE; \mathbb{Z}/p) \simeq ((A/(x_1x_2) \oplus B) \oplus (A^+ \oplus B)z) \otimes \mathbb{Z}/p[u^p]$, where A^+ is the positive degree parts of A.

4. Margolis homology of $H^*(BE; \mathbb{Z}/p)$

Recall that the Milnor primitive derivation Q_n is defined by $Q_0 = \mathcal{B}$ and $Q_n = \mathcal{P}^{p^n}Q_{n-1} - Q_{n-1}\mathcal{P}^{p^n}$. It is known that Q_n is a derivation and $Q_n^2 = 0$. We consider the homology (Margolis homology) defined by the differential Q_n , $H(H^*(BE; \mathbb{Z}/p), Q_n)$. Recall $A = E_{\infty}^{*,0} = S_2 \otimes \Lambda_2/(B(x,y), B(x,y^p), B(y,y^p))$ in Theorem 3.3.

LEMMA 4.1. Each element $f \in A$ is uniquely expressed as $f = a_0 + a_1x_1 + a_2x_2 + a_{12}x_1x_2$ with $a_0 \in S_2/B(y, y^p)$, $a_1 \in S_2/(B(y, y^p)/y_1)$, $a_2 \in \mathbb{Z}/p[y_2]$ and $a_{12} \in \mathbb{Z}/p$.

Proof. First note $y_1x_1x_2 = y_2x_1^2 = 0 \mod B(x,y) = y_2x_1 - y_1x_2$ and similarly $y_2x_1x_2 = 0$. Hence $a_{12} \in S_2/(y_1,y_2) \simeq \mathbb{Z}/p$. Next if

 $a_2 = y_1 a_2'$, then $a_2 x_2 = y_1 a_1' x_2 = a_2' y_2 x_1 \mod B(x, y)$. Hence we can express $a_2 x_2$ by $a_1 x_1$. Since $0 = B(x, y^p) - y_1^{p-1} B(x, y^p) = y_2^p x_1 - y_1^p x_2 - y_1^{p-1} (y_2 x_1 - y_1 x_2) = (y_2^p - y_1^{p-1} y_2) x_1 = (B(y, y^p)/y_1) x_1$ in A, we get the Lemma. \square

LEMMA 4.2. $H(A,Q_n) \simeq S_2/(B(y,y^p),y_1^{p^n},y_2^{p^n}) \oplus \mathbb{Z}/p\{x_1x_2\}.$

Proof. The Q_n operator on x_1x_2 is

$$\begin{split} Q_n x_1 x_2 &= y_1^{p^n} x_2 - y_2^{p^n} x_1 = (y_1^{p^n - 1} - y_2^{p^n - 1}) y_2 x_1 \\ &= (y_1^{p - 1} - y_2^{p - 1}) (y_1^{(p^{n - 1} + \dots + 1)} + \dots + y_2^{(p^{n - 1} + \dots + 1)}) y_2 x_1 \\ &= 0, \text{ since } (y_1^{p - 1} - y_2^{p - 1}) y_2 = B(y, y^p) / y_1. \end{split}$$

Let f be expressed as Lemma 4.1. Then we have

$$(4.3) Q_n f = a_1 y_1^{p^n} + a_2 y_2^{p^n}.$$

If $f \in Ker Q_n$, then $(4.3) \in Ideal B(y, y^p) \subset Ideal (y_1y_2)$. Since $a_2 \in \mathbb{Z}/p[y_2]$, a_2 must be zero. Hence $a_1y_1^{p^n} \in Ideal B(y, y^p) = y_1(y_2^p - y_1^{p-1}y_2)$ and so $a_1 \in Ideal(y_2^{p-1} - y_1^{p-1}y_2)$. Hence we can take $a_1 = 0$. Therefore we get

$$Ker Q_n = \{ f \mid f = a_0 + a_{12}x_1x_2 \}.$$

From (4.3), Image Q_n is expressed as Ideal $(y_1^{p^n}, y_2^{p^n})$ in S_2 . Thus we get the Lemma. \square

It is well-known [Ls], [T-Y] that we can take Chern Classes C_p , C_i in $H^*(\tilde{E})$ as elements $\{u^p\}$, $\{x_1x_2u^i\}$, that is, there is a representation $p: \tilde{E} \to U(n)$ such that p^*C_i represents $\{x_1x_2u^i\}$ where $H^*(BU(n)) = \mathbb{Z}/p[C_1, C_2, \cdots]$, $|C_i| = 2i$. Since $H^*(BU(n))$ generated by even dimensional elements, all Q_n are zero and so are $\{u^p\}$, $\{x_1x_2u^i\}$. Hence we get the following theorem.

THEOREM 4.4. $H(H^*(B\tilde{E}; \mathbb{Z}/p), Q_n) \simeq H((A \oplus B) \otimes \mathbb{Z}/p[u^p], Q_n) \simeq (H(A, Q_n) \oplus B) \otimes \mathbb{Z}/p[u^p].$

LEMMA 4.5.
$$H(A/(x_1x_2), Q_n) \simeq S_2/(B(y, y^p), y_1^{p^n}, y_2^{p^n}).$$

Proof. Recall that $Q_n(x_1x_2)=0$ and $y_ix_1x_2=0$ for i=1,2. From Lemma 4.2, we get $H(A/(x_1x_2),\ Q_n)=H(A,\ Q_n)/(x_1x_2)$. \square

THEOREM 4.6. $grH(H^*(BE; \mathbb{Z}/p), Q_n) \simeq S_2/(B(y, y^p), y_1^{p^n}, y_2^{p^n}) \oplus B) \otimes \mathbb{Z}/p[u^p]/(y_1u^{p^n}, y_2u^{p^n}, (x_1x_2u^i)u^{p^n}) \oplus \mathbb{Z}/p[u^p]\{x_1x_2z\}.$

Proof. Let $C = \operatorname{gr} H^*(BE; \mathbb{Z}/p)$ in Theorem 3.5. Let $F_1 = (A/(x_1 x_2) \oplus B) \otimes \mathbb{Z}/p[u^p]$. Then we have the isomorphisms

$$H(F_1, Q_n) \simeq (H(A, Q_n)/(x_1x_2) \oplus B) \otimes \mathbb{Z}/p[u^p]$$

$$H(C/F_1, Q_n) \simeq H((A^+ \oplus B) \otimes \mathbb{Z}/p[u^p]z, Q_n)$$

$$\simeq (H(A, Q_n)^+ \oplus B) \otimes \mathbb{Z}/p[u^p] \otimes \{z\}.$$

Next consider the spectral sequence

$$E_1 = H(F_1, Q_n) \oplus H(C/F_1, Q_n) \Rightarrow H(C, Q_n).$$

Here we study $d_1 = Q_n$. For this we consider in the spectral sequence (2.1). In the spectral sequence we can prove that

$$Q_n(y_i \otimes z) = y_i u^{p^n}$$
$$Q_n(x_1 x_2 u^i \otimes z) = x_1 x_2 \otimes u^{p^n + i}.$$

Therefore the E_2 -term is computed

$$E_{2} = (H(A, Q_{n})/(x_{1}x_{2}) \oplus B)$$

$$\otimes \mathbb{Z}/p[u^{p}]/(y_{1}u^{p^{n}}, y_{2}u^{p^{n}}, (x_{1}x_{2}u^{i})u^{p^{n}}) \oplus \mathbb{Z}/p\{x_{1}x_{2}z\}[u^{p}].$$

Hence we have the theorem by this spectral sequence.□

5. Morava K-theory

The Morava K-theory $K(n)^*(-)$ is generalized cohomology theory with the coefficient $K(n)^* = \mathbb{Z}/p[v_n, v_n^{-1}], |v_n| = -2p^n + 2$. We consider the Atiyah-Hirzebruch spectral sequence for Morava K-theory

$$E_2^{*,*} = H^*(X; K(n)^*) \Rightarrow K(n)^*(X).$$

It is known [Hu], [T-Y] that the differential $d_{2p^n-1}(x) = v_n \otimes Q_n x$. Hence we get

$$E_{2p}^{*,*} \simeq K(n)^* \otimes H(H^*(X; \mathbb{Z}/p), Q_n).$$

THEOREM 5.1.
$$grK(n)^*(B\tilde{E}) \simeq K(n)^* \otimes H(H^*(B\tilde{E}; \mathbb{Z}/p), Q_n)$$
.

Proof. From Lemma 4.2 and Theorem 4.4, $H(H^*(B\tilde{E}; \mathbb{Z}/p), Q_n)$ is generated by even dimensional elements, hence $E_{2p}^{*,*} \simeq E_{\infty}^{*,*}$. \square

Revenel [R] showed that $\dim_{K(n)^*} K(n)^*(BG)$ is finite for each finite group G. Hopkins-Kuhn-Ravenel [H-K-R] defined K(n)-theory Euler character χ_n by

$$(5.2) \quad \chi_n(G) = \dim_{K(n)^*} K(n)^{\text{even}}(BG) - \dim_{K(n)^*} K(n)^{\text{odd}}(BG).$$

For p-groups G, this Euler character can be described in term of conjugay classes of commuting n-tuples of elements in G.

$$\chi_n(G) = \text{number of } \{(g_1, \dots, g_n)\} \mid [g_i, g_j] = 1, \ g_i \in G\} / G$$

with the conjugate action $g \cdot (g_1, \dots, g_n)$ $\sim (gg_1g^{-1}, \dots, gg_ng^{-1})$. They also showed (Lemma 5.3.6. in [H-K-R]) that χ_n is computed inductively

(5.3)
$$\chi_n(G) = \sum_{\langle q \rangle} \chi_{n-1}(C_G(g))$$

where $\langle g \rangle$ runs over conjugate classes in G and $C_G(g) = \{h \in G \mid [h,g]=1\}$ is the centralizer of g in G.

Now we consider $K(n)^*(BE)$. Recall $H(\operatorname{gr}(H^*(BE; \mathbb{Z}/p), Q_n))$ in Theorem 4.4. If $d_r\{x_1x_2z\} = 0$ for all r, then $E_{2p}^{*,*} \simeq E_{\infty}^{*,*}$ hence $\dim_{K(n)^*}K(n)^*(BE)$ is infinite since $c^s \neq 0$. This contradicts the result of Ravenel. Therefore we know

(5.4)
$$d_r\{x_1x_2z\} = v_n^k u^{sp}$$
 for some s with $2ps - 3 - 1 = 2(p^n - 1)k$.

LEMMA 5.5.
$$\dim_{K(n)^*} K(n)^*(BE) = p^{2n} + p^{2n-1} - 3p^{n-1} + s$$
.

Proof. From Theorem 4.6, $K(n)^*(BE)$ has $K(n)^*$ -basis $\{y_1^k y_2^l, y_2^k, C_s\} \otimes u^{jp} (1 \le k \le p^n, 0 \le l < p, 1 \le s \le p-2, 0 \le j \le p^{n-1}), \{u^{hp}\} (0 \le h < s)$. Hence we see

$$\dim_{K(n)^*} K(n)^* (BE) = ((p^n - 1)p + (p^n - 1) + (p - 2))p^{n-1} + s$$
$$= p^{2n} + p^{2n-1} - 3p^{n-1} + s. \square$$

LEMMA 5.6.
$$\chi_n(E) = p^{2n} + p^{2n-1} - p^{n-1}$$
.

Proof. The conjugacy classes of E are <1>, $< C^k>$, $< a^i b^k c^l \mid 0 \le l < p>$ and their centralizer are $E, E, \mathbb{Z}/p \oplus \mathbb{Z}/p$, respectively. So from (5.3)

$$\chi_n(E) = p\chi_{n-1}(E) + (p^2 - 1)\chi_{n-1}(\mathbb{Z}/p \oplus \mathbb{Z}/p)$$

= $p\chi_{n-1}(E) + (p^2 - 1)p^{2n-2}$.

Hence we get this Lemma. \square

From Lemma 5.5 and Lemma 5.6, we know $sp = 2p^n$, hence k = 2. Therefore $d_{4(p^2-1)+1}\{x_1x_2z\} = v_n^2u^{2p^n}$. From Theorem 4.6, we know

$$E_{4p^n-2}^{*,*} = K(n)^* \otimes H(H(BE; \mathbb{Z}/p); Q_n) - \mathbb{Z}/p[u^p]\{x_1x_2z\})/(u^{2n}).$$

Moreover, $E_{4p^n-2}^{*,*}$ is generated by even dimensional elements, so $E_{4p^2+3} \simeq E_{\infty}$. Thus we get;

THEOREM 5.7. [T-Y] $grK(n)^*(BE) \simeq K(n)^*(S_2/(B(y, y^p), y_1^{p^n}, y_2^{p^n})) \oplus \mathbb{Z}/p\{C_2, \cdots, C_{p-1}\} \otimes \mathbb{Z}/p[C_p]/(y_1C_p^{p^{n-1}}, y_2C_p^{p^{n-1}}, C_iC_p^{p^{n-1}}, C_iC_p^{p^{n-1}}, C_iC_p^{p^{n-1}})$ with $C_p = u^p, C_i = \{x_1x_2u^i\}.$

REMARK. There are misstype in [T-Y]. In this paper y_iC_p should be $y_iC_p^{p^{n-1}}$ and $C_iC_p^{p^{n-1}}=0$ should be added. From [T-Y] we also know the above $\operatorname{gr} K(n)^*(BE)$ is exactly $K(n)^*(BE)$ except for the products of C_i $(1 \le i \le p-1)$.

References

- [A-M] J. E. Adams and H. R. Margolis, Module over the Steenrod algebra, Topology 10 (1971), 271-282.
- [c] J. S. Cha, Margolis homology and Morava K-theory for cohomology of the Dihedral group, Kodai Math. J. 16 (1993), 220-226.
- [H-K-R] M. Hopkins, N. Kuhn and D. Ravenel, Generalized group characters and complex oriented cohomology theory(preprint).
- [Hu] J. Hunton, The Morava K-theories of wreath product, Math. Proc. Cambridge Phile. Soc. 107 (1990), 309-318.
- [Ly 1] I. J. Leary, The integral cohomology rings of some p-groups, Math. Proc. Cambridge Phile. Soc. 110 (1991), 25-32.

- [Ly 2] I. J. Leary, The cohomology of certain finite groups, Thesis at the Univ. Cambridge (1990).
- [Ls] G. Lewis, The integral cohomology rings of groups of order p³, Trans. Amer. Math. Soc. 132 (1968), 501-529.
- [R] D. C. Ravenel, Morava K-theories and finite groups, In S. Gitler, editor, Symposium on Algebraic Topology in Honor of José Adem, Amer. Math. Soc. Providence, Rhode Island (1982), 289-292.
- [T-Y 1] M. Tezuka and N. Yagita, The varieties of the modp cohomology rings of extra special p-groups for an odd prime p, Math. Proc. Cambridge Phil. Soc. 94 (1983), 449-459.
- [T-Y 2] M. Tezuka and N. Yagita, Cohomology of finite groups and the Brown-Pete rson cohomology, Springer LNM 1370 (1989), 396-408.

Department of Mathematics Kyung Hee University Suwon 449-701, Korea