• Title/Summary/Keyword: Mathematical Process

Search Result 2,507, Processing Time 0.023 seconds

SOME LIMIT THEOREMS FOR POSITIVE RECURRENT AGE-DEPENDENT BRANCHING PROCESSES

  • Kang, Hye-Jeong
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.25-35
    • /
    • 2001
  • In this paper we consider an age dependent branching process whose particles move according to a Markov process with continuous state space. The Markov process is assumed to the stationary with independent increments and positive recurrent. We find some sufficient conditions for he Markov motion process such that the empirical distribution of the positions converges to the limiting distribution of the motion process.

  • PDF

A Comparative Analysis of International Mathematics Curricula Focusing on 'Grade Band' and 'Mathematical Process' (학년군'과 '수학적 과정'을 중심으로 한 외국 수학과 교육과정의 최근 경향 비교.분석)

  • Park, Kyung-Mee
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.667-686
    • /
    • 2010
  • The mathematics curriculum revision is currently underway based on the general curriculum revised in 2009. Two of the controversial issues in mathematics curriculum revision are 'grade band' and 'mathematical process'. To consider the introduction of those two aspects in mathematics curriculum, this study compares and analyzes international mathematics curricula focusing on grade band and mathematical process. As a result, grade band is judged to be not necessary, but mathematical process has a potential to provide practical implication for betterment of mathematics textbook and lesson.

  • PDF

A Case Study on Activating of High School Student's Metacognitive Abilities in Mathematical Problem Solving Process using Visual Basic (비주얼 베이식을 이용한 수학 문제해결 과정에서 고등학생의 메타인지적 능력 활성화)

  • 이봉주;김원경
    • The Mathematical Education
    • /
    • v.42 no.5
    • /
    • pp.623-636
    • /
    • 2003
  • Metacognition is defined to be 'thinking about thinking' and 'knowing what we know and what we don't know'. It was verified that the metacognitive abilities of high school students can be improved via instruction. The purpose of this article is to investigate a new method for activating the metacognitive abilities that play a key role in the Mathematical Problem Solving Process(MPSP). Hyunsung participated in the MPSP using Visual Basic Programming. He actively participated in the MPSP. There are sufficient evidences about activating the metacognitive abilities via the activity processes and interviews. In solving mathematical problems, he had basic metacognitive abilities in the stage of understanding mathematical problems; through the experiments, he further developed his metacognitive abilities and successfully transferred them to general mathematical problem solving.

  • PDF

Case Study : An analysis on Problem Solving Processes of Gifted Math Students (수학영재아의 문제해결 과정에 따른 사례 연구 - 수학적 사고능력을 중심으로 -)

  • Jung, Chan-Sik;Roh, Eun-Hwan
    • The Mathematical Education
    • /
    • v.48 no.4
    • /
    • pp.455-467
    • /
    • 2009
  • During problem solving, "mathematical thought process" is a systematic sequence of thoughts triggered between logic and insight. The test questions are formulated into several areas of questioning-types which can reveal rather different result. The lower level questions are to investigate individual ability to solve multiple mathematical problems while using "mathematical thought." During problem solving, "mathematical thought process" is a systematic sequence of thoughts triggered between logic and insight. The scope of this case study is to present a desirable model in solving mathematical problems and to improve teaching methods for math teachers.

  • PDF

ON A CENTRAL LIMIT THEOREM FOR A STATIONARY MULTIVARIATE LINEAR PROCESS GENERATED BY LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM VECTORS

  • Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • For a stationary multivariate linear process of the form X$_{t}$ = (equation omitted), where {Z$_{t}$ : t = 0$\pm$1$\pm$2ㆍㆍㆍ} is a sequence of stationary linearly positive quadrant dependent m-dimensional random vectors with E(Z$_{t}$) = O and E∥Z$_{t}$$^2$< $\infty$, we prove a central limit theorem.theorem.

SOME LIMITING RESULTS OF REFLECTED ORNSTEIN-UHLENBECK PROCESSES WITH TWO-SIDED BARRIERS

  • Zhu, Chenglian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.573-581
    • /
    • 2017
  • Reflected Ornstein-Uhlenbeck process is a process that returns continuously and immediately to the interior of the state space when it attains a certain boundary. In this work, we are concerned with the study of asymptotic behaviours of parametric estimation for ergodic reflected Ornstein-Uhlenbeck processes with two-sided barriers. Moreover, we also focus on the relations between regulators and the local time process.

An Initial Contribution to the Development of a Design Theory of Mathematical Interests: The Case of Statistical Data Analysis

  • Cobb, Paul;Hodge, Lynn Liao
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.1-65
    • /
    • 2003
  • The focus of this article is on the process of cultivating students' interests so that they come to view mathematics as an activity worthy of their engagement. We first define and operationalize the notion of interests, in the process developing a perspective in which they are seen to be generative, to evolve, and to be deeply cultural. We concretize this perspective by presenting an analysis of a classroom design experiment that documents both the process by which the students' interests evolved and the means by which these developments were supported. We then frame the analysis as a case in which to tease out the implications for a nascent design theory of mathematical interests and in doing so give particular attention to the issue of equity in students' access to significant mathematical ideas

  • PDF

A Study on the Method of Mathematical Situation Posing (수학적 상황 설정 방법에 관한 연구)

  • 홍성민;김상룡
    • Education of Primary School Mathematics
    • /
    • v.6 no.1
    • /
    • pp.41-54
    • /
    • 2002
  • The purpose of this study is to find out what mathematical situation means, how to pose a meaningful situation and how situation-centered teaching could be done. The obtained informations will help learners to improve their math abilities. A survey was done to investigate teachers' perception on teaching-learning in mathematics by elementary teachers. The result showed that students had to find solutions of the textbook problems accurately in the math classes, calculated many problems for the class time and disliked mathematics. We define mathematical situation. It is artificially scene that emphasize the process of learners doing mathematizing from physical world to identical world. When teacher poses and expresses mathematical situation, learners know mathematical concepts through the process of mathematizing in the mathematical situation. Mathematical situation contains many concepts and happens in real life. Learners act with real things or models in the mathematical situation. Mathematical situation can be posed by 5 steps(learners' environment investigation step, mathematical knowledge investigation step, mathematical situation development step, adaption step and reflection step). Situation-centered teaching enhances mathematical connections, arises learners' interest and develops the ability of doing mathematics. Therefore teachers have to reform textbook based on connections of mathematics, other subject and real life, math curriculum, learners' level, learners' experience, learners' interest and so on.

  • PDF

Analyzing an elementary school teacher's difficulties and mathematical modeling knowledge improvement in the process of modifying a mathematics textbook task to a mathematical modeling task: Focused on an experienced teacher (수학 교과서 과제의 수학적 모델링 과제로의 변형 과정에서 겪는 초등학교 교사의 어려움과 수학적 모델링 과제 개발을 위한 지식의 변화: 한 경력 교사의 사례를 중심으로)

  • Jung, Hye-Yun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.363-380
    • /
    • 2023
  • This study analyzed the difficulties and mathematical modeling knowledge improvement that an elementary school teacher experienced in modifying a mathematics textbook task to a mathematical modeling task. To this end, an elementary school teacher with 10 years of experience participated in teacher-researcher community's repeated discussions and modified the average task in the data and pattern domain of the 5th grade. The results are as followings. First, in the process of task modification, the teacher had difficulties in reflecting reality, setting the appropriate cognitive level of mathematical modeling tasks, and presenting detailed tasks according to the mathematical modeling process. Second, through repeated task modifications, the teacher was able to develop realistic tasks considering the mathematical content knowledge and students' cognitive level, set the cognitive level of the task by adjusting the complexity and openness of the task, and present detailed tasks through thought experiments on students' task-solving process, which shows that teachers' mathematical modeling knowledge, including the concept of mathematical modeling and the characteristics of the mathematical modeling task, has improved. The findings of this study suggest that, in terms of the mathematical modeling teacher education, it is necessary to provide teachers with opportunities to improve their mathematical modeling task development competency through textbook task modification rather than direct provision of mathematical modeling tasks, experience mathematical modeling theory and practice together, and participate in teacher-researcher communities.