In this study, we studied some examples using GSP(Geometer's SketchPad) in the process of problem solving that is explained by G. polya. After reconsidering examples, we tried to show that using GSP can help student's intuitive thinking, investigative activities, reflective thinking. Especially, in the three phase of problem solving(understanding the problem, devising a plan, looking back), mathematics teachers may using GSP in order to helping student's understanding. Besides, we tried to suggest the direction to use GSP more adequately in the teaching and Beaming mathematics. First of all, Mathematics teachers using GSP in their class must have ideas how to use it. And they have to be careful on the didactical transposition of mathematical knowledge in the computer-based learning. They also have to lead students move from activities with GSP materials to carrying out the problem solving plan and reflection activities.
본 연구는 2015 개정 수학과 교육과정에 따른 <확률과 통계> 교과서의 통계적 추정 단원에서, 통계적 문제해결과정과 함께 통계적 소양이 어떻게 구현되는가를 분석하였다. 문헌 연구를 통해 통계적 소양의 성장에 기여하는 요소로서 '맥락', '변이성', '수학적·통계적 지식', '공학 도구의 활용', '비판적 태도', '의사소통'을 도출하여 통계적 문제해결과정에 따른 분석 관점을 설정하고, 이를 코드화하여 개발한 분석틀을 토대로 교과서 분석을 실시하였다. 통계적 문제해결과정의 관점에서 분석결과 '자료 분석'에 해당하는 과제가 많이 제시되어 있었고 '결과 해석', '문제 설정'과 관련한 과제가 부족하였다. 통계적 소양의 요소별 반영에 관한 분석 결과 '수학적·통계적 지식'을 요구하는 과제가 가장 많았으며, '비판적 태도', '공학 도구 활용'은 거의 다루어지지 않고 있었다. 이러한 교과서 분석결과를 바탕으로 통계적 소양의 함양 교육을 위한 교육과정 개선 및 교과서 개발에 대한 시사점을 제시하였다.
This study is a study to collect information about 'Limitations of functions' related learning. Especially, this study was conducted on three students who can find answers by algebraic procedure in the process of extreme problem solving. Students have had the experience of converting from their algebraic procedures to graphical expressions. This shows how they reflect on their algebraic procedures. This study is a study that observes these parts. To accomplish this, twelfth were teaching experiment in three high school students. And we analyzed the contents related to the research topic of this study. Through this, students showed the difference of expressions in the method of finding limits by using algebraic interpretation methods and graphs. In addition, we examined the connectivity of the limitations of functions problem solving process of functions using algebraic procedures and graphs in the process of converting algebraic expressions to graph expressions. This study is a study of how students construct limit concepts. As in this study, it is meaningful to accumulate practical information about students' limit conceptual composition. We hope that this study will help students to study limit concept development process for students who have no limit learning experience in the future.
동적 기하 환경은 학생들의 기하 문제 해결에 긍정적인 역할을 한다. 학생들은 드래깅을 통해 변화 속에서 불변성을 추측할 수 있으며, 분석법은 기하 문제를 해결하는 데 도움을 준다. 하지만 드래깅 활동과 분석법을 활용한 문제 해결은 제한점이 있으며, 연속 스펙트럼은 대안이 될 수 있다. 학생들은 코딩이 결합된 동적 기하 환경에서 프로그래밍을 통해 연속 스펙트럼을 구현할 수 있다. 이에 본 연구에서는 동적 기하 환경의 문제 해결에서 연속 스펙트럼을 활용하는 방안을 제시하였다. 학생들은 문제 해결의 이해 단계에서 시각적으로 표현된 문제 상황을 통해 즉각적으로 이해하고, 계획 단계에서 해결 전략을 수립하고, 반성 단계에서 결과의 점검 및 일반화하는 데 도움을 줄 수 있다.
In this paper, we provide a geometrical solving method about the equiangular problem appeared in the solving process of the isoperimetric problem of polygon. In fact we deal with the following problem in the view of the productive thinking centered on the circle: Let B and G be fixed points, and let $\bar{AB}=\bar{AP_1}=\bar{DP_1}=\bar{DP_2}=\bar{FP_2}=\bar{FP_3}=\bar{HP_{n-1}}=\bar{HG}$. Then find the position of moving points $P_i(1{\leq}i{\leq}n)$ to maximize the sum of areas of the triangles that lie on the line segment $\bar{BG}$.
This study was to investigate the types of errors and the frequency of errors to understand students' solving process on the descriptive items with the students of an excellent high school which located in a non-leveling local school district of Gyunggi Province. All 11 items were developed in the equation of a circle and 120 students who attended this high school participated in solving them. The result showed a tendency as follows: Logically invalid inference(Type A, 38.83%) of errors, Omission error of the problem solving process(Type B, 25%), Technical error(Type C, 15.67%), Wrong conclusion(Type D, 11.94%), Use of wrong theorem(Type E, 5.97%), and Use of wrong picture(Type F, 2.61%). The logically invalid inference the students showed with a largest tendency was made because of the lack of reflection. This meant that this error could be corrected in a little treatment of carefulness.
본 연구의 목적은 초등학교 수학 영재들의 수학적 창의성 신장을 위한 교육 프로그램을 개발하고 그 효과를 살펴보는데 있다. 프로그램 개발을 위해 기존의 영재교육 자료 및 관련 문헌을 분석하였으며, 이를 바탕으로 초등수학에서 가장 큰 비중을 차지하고 있는 수와 연산영역의 내용과 관련된 '연산빙고게임'을 토대로 수학영재학급의 교육 프로그램 및 교수-학습 자료를 개발하였다. 프로그램의 효과는 '창의적 산출물 평가틀'의 요소 중 수행능력을 중심으로 살펴보았다. 개발된 프로그램의 창의적 문제해결력의 효과를 살펴본 결과 개인별로 속도의 차이는 있었으나 수행 능력에 있어서 모든 학생이 점차로 향상되는 모습을 확인할 수 있었다.
The Center for Science Gifted Education (CSGE) of Chongju National University of Education was established in 1998 with the financial support of the Korea. Science & Engineering Foundation (KOSEF). In fact, we had prepared mathematics and science gifted education program beginning in 1997. It was possible due to the commitment of faculty members with an interest in gifted education. Now we have 5 classes in Mathematics, two of which are fundamental, one of which is a strengthened second-grade class gifted elementary school students, and one a fundamental class, and one a strengthened class for gifted middle school students in Chungbuk province. Each class consists of 16 students selected by a rigorous examination and filtering process. Also we have a mentoring system for particularly gifted students in mathematics. We have a number of programs for Super-Saturday, Summer School, Winter School, and Mathematics and Science Gifted Camp. Each program is suitable for 90 or 180 minutes of class time. The types of tasks developed can be divided into experimental, group discussion, open-ended problem solving, and exposition and problem solving tasks. Levels of the tasks developed for talented elementary students in mathematics can be further divided into grade 5 and under, grade 6, and grade 7 and over. Types of the tasks developed can be divided into experimental, group discussion, open-ended problem solving, and exposition and problem solving task. Also levels of the tasks developed for talented elementary students in mathematics can be divided into the level of lower than grade 5, level of grade 6, and level of more than grade 7. Three tasks developed and practiced are reported in this article.
수학 교육에서 문제 해결에 대한 중요성은 지속적으로 강조되고 많은 연구가 진행되어 왔지만 정의적 측면에서 문제 해결에 관한 연구는 부족하다. 본 연구는 문제해결 과정에서 나타나는 학생들의 감정이 어떠한지 분석하였다. 그 결과 첫째, 학생들은 문제를 해결하는 동안 여러 차례의 감정 변화를 경험했고, 긍정과 부정의 감정이 공존해서 나타났다. 둘째, 같은 문제를 동일한 풀이 방법으로 해결하였지만 감정변화가 다른 이유는 학생의 수학 문제해결에 대한 신념과 겉보기 난이도 때문이었다. 셋째, 학생이 문제 해결에서 긍정이나 부정의 감정을 느끼는 것은 수학적 태도와 관련이 있었다. 넷째, 학생들은 문제에 대한 겉보기 난이도가 '상'일 때 '하'보다 부정적 감정을 많이 경험했지만 문제 해결 후 성취감은 더 컸다.
최근 들어 영재교육에 관한 논의가 갑자기 활발하게 이루어지고 있다. 소란스럽게 확산된 대부분의 교육 운동이 그러했듯이 영재교육도 짧은 번영 후 길고 신랄한 비판의 운명에 처하는 것은 아닌지 걱정스럽다. 부모들의 이상적인 교육 열기는 자녀를 지명도 있는 영재센터에서 교육시키고 싶은 열망으로 이어지고, 이에 따라 영재교육에 대한 수요가 급증하고 있다. 뿐만 아니라 정책적으로도 영재교육을 장려하기 때문에, 대학의 영재센터를 중심으로 운영되던 영재교육이 이제는 각 초중등학교 단위에서도 실시하기에 이르렀다. 이와 같이 영재 교육이 성급하고 무분별하게 확산되고 있는 이 시점에서 영재 교육에 대한 반성적 성찰이 필요하다. 영재교육은 크게 선발, 교육, 평가의 세 가지 요소를 중심으로 이루어지는데, 그 중에서 이 글은 영재 선발과 평가의 과정을 비판적인 관점에서 점검하고자 한다. 경시대회나 영재 선발을 위한 준비 기관에서 제공하는 문제들은 우리의 분석에 따르면 수학적으로 또 교육적으로 그리 바람직하지 않은 경우가 적지 않았다. 우선 문제 상황이 지나치게 인위적이고 복잡하며, 수학적 지식과는 피상적으로 그리고 단편적으로만 연결되어 있는 경우가 많다 또한 해결과정이 조잡하고, 수학보다는 임시방편적인 방법에 의존하였으며, 이전에 문제를 해결한 경험에 따라 해결 여부나 속도가 크게 좌우되는 경향이 있다. 청주교육대학교의 영재 선발은 이러한 전철을 봤지 않기 위해 노력해 왔다. 본 고에서는 그러한 노력의 일부를 소개하였으며, 여기서 소개한 영재 판별 문항이 최선의 것은 아니지만 앞의 부적합한 문항들과 질적으로 다르다고 할 수 있다. 영재교육 후의 재평가 역시 영재 선발이나 교육 못하지 않게 중요하다. 청주교육대학교의 영재 프로그램에서는 교육 내용을 단순하게 확인하는 것이 아니라 얼마나 교육 내용을 이해하고 확장적으로 적용하였는가를 평가하는 문제를 개발하여 활용해 왔다. 본 고가 영재 선발이 내포하는 근본적이면서도 심각한 문제들을 제기하여 자기 성찰의 기회를 갖는 시작점이 되기를 바란다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.