• 제목/요약/키워드: Mathematical Problem Solving Ability

검색결과 277건 처리시간 0.02초

경도장애 학생들의 수학적 문제해결을 위한 폴리아의 전략 효과 연구 (The Effect of Polya's Heuristics in Mathematical Problem Solving of Mild Disability Students)

  • 한경화;김영옥
    • East Asian mathematical journal
    • /
    • 제32권2호
    • /
    • pp.253-289
    • /
    • 2016
  • This study attempted to figure out new teaching method of mathematics teaching-learning by applying Polya's 4-level strategy to mild disability students at the H Special-education high school where the research works for. In particular, epilogue and suggestion, which Polya stressed were selected and reconstructed for mild disability students. Prior test and post test were carried by putting the Polya's problem solving strategy as independent variable, and problem solving ability as dependent variable. As a result, by continual use of Polya's program in mathematics teaching course, it suggested necessary strategies to solve mathematics problems for mild disability students and was proven that Polya's heuristic training was of help to improve problem solving in mathematics.

중학생들의 성별에 따른 다중지능과 기술적 문제해결력과의 관계 (The Relation between Gender and Multiple Intelligence and Technological Problem Solving Ability of Middle School Students)

  • 안광식;최완식
    • 대한공업교육학회지
    • /
    • 제31권2호
    • /
    • pp.64-82
    • /
    • 2006
  • 이 연구에서는 학습자 개인의 다양한 지적 능력을 파악할 수 있는 다중지능이 성별에 따라 기술적 문제해결력에 어떠한 영향을 미치고 있는가를 조사하여, 성별에 따른 기술적 문제해결력의 차이를 줄이기 위한 방안을 제시하고자 한다. 연구의 대상은 광역시 이상에 소재한 중학교 3학년 833(남학생 423, 여학생 410)명이었고, 문용린(2001)과 1998년 CRESST에서 개발한 도구를 사용하였다. 연구의 결과 첫째, 신체운동지능, 논리수학지능, 자연친화지능, 음악지능, 대인관계지능, 자기성찰지능은 남학생과 여학생간에 통계적으로 유의한 차이가 있는 것으로 밝혀졌다. 둘째, 기술적 문제해결력의 자기조절성향과 문제해결전략에서 남학생과 여학생간에 통계적으로 유의한 차이가 있는 것으로 밝혀졌다. 셋째, 자기조절성향에 영향을 미치는 다중지능으로 남학생은 논리수학지능, 언어지능, 자기성찰지능, 자연친화지능, 여학생은 논리수학지능, 자기성찰지능, 자연친화지능, 언어지능으로 밝혀졌다. 넷째, 문제해결력에 영향을 미치는 다중지능으로 남학생은 논리수학지능, 음악지능, 신체운동지능, 여학생은 언어지능과 음악지능으로 밝혀졌다. 다섯째, 지식 개념도 작성에 영향을 미치는 다중지능으로는 남학생과 여학생 모두 논리수학지능으로 밝혀졌다. 연구의 결과 나타난 성별에 따른 차이를 줄이기 위해, 초 중등학교 교육과정 개발에 다중지능과 직 간접적으로 관련된 분야를 집중적으로 개발할 수 있도록 고려한다면 다중지능의 차이에 의해서 발생되는 학업성취도 차이를 어느 정도 극복할 수 있을 것으로 판단된다.

문제설정 수업모형이 문제해결력과 수학 태도에 미치는 효과 (The effect of the Problem Posing Teaching Model on Problem Solving and Learning Attitude)

  • 이상원
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제43권3호
    • /
    • pp.233-255
    • /
    • 2004
  • Problem solving in math education is of great importance. The interest on problem solving in math education is growing all over the world. Problem solving ability is important throughout the fourth-sixth national curriculum in Korea and this is also necessary in the seventh national curriculum. The writer has implemented a proper model for problem posing and this is also necessary in the seventh national curriculum that emphasizes self-leading for improvement in the classroom. This model has advantages to cultivate a good habit of students who tries to solve the problems with concrete strategies, to take part in the problem solving activity and to change their mathematical attitude.

  • PDF

메타인지 전략 학습을 통한 수학적 사고력 신장 방안 연구 (Metacognitive Learning Methods to Improve Mathematical Thinking)

  • 박혜연;정순모;김응환
    • 한국학교수학회논문집
    • /
    • 제17권4호
    • /
    • pp.717-746
    • /
    • 2014
  • 21세기 지식 기반 사회에 적합한 인재는 자기주도적으로 지적 가치를 창출할 수 있는 자율적이고 창의적인 사고력을 갖춘 사람으로, 수학교육 현장에서는 학생들의 창의사고력이 강조되고 있다. 이러한 창의사고력은 자신의 사고과정을 모니터하고 조절 통제하는 메타인지능력과 밀접한 관련이 있다. 이에 본고에서는 메타인지와 관련된 여러 연구결과들의 통합을 통해 '메타인지능력과 수학적 사고력과의 상관관계, 메타인지 전략을 활용한 교수 학습 방법 및 그 효과, 메타인지 능력 향상을 통한 수학적 사고력 신장 방안'을 고찰하고자 하였다.

  • PDF

Lesh 표상 변환(translation) 모델을 적용한 3학년 학생들의 분수개념 학습 (Third grade students' fraction concept learning based on Lesh translation model)

  • 한혜숙
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권1호
    • /
    • pp.129-144
    • /
    • 2009
  • 본 연구에서는 초등학교 3학년 학생들을 대상으로 Lesh 표상 변환 모델을 적용한 RNP 교재의 사용이 분수에 대한 아동의 개념 이해와 문제 해결력에 어떤 영향을 미치는지를 알아보았다. RNP 교재의 사용은 아동들의 분수에 대한 개념적 이해를 향상시켰을 뿐 아니라 그들의 문제해결 능력 또한 향상시켰다. RNP 교재가 제공하는 다양한 구체적 조작 활동 및 표상 변환 활동을 통해서 아동들은 등분할로서의 분수의 개념에 대한 이해를 더욱 명확히 하였고, 개념적 이해를 토대로 다양한 문제 상황에서 적절한 문제 해결 전략을 사용하여 문제를 해결하였다. 특히, 후속 학습 내용인 분수의 크기 비교에 관한 문제 상황에서 아동들은 선행 학습 과정에서 만들어진 심상이나 수학적 경험을 토대로 올바른 추론 과정을 보여주었다.

  • PDF

Math Creative Problem Solving Ability Test for Identification of the Mathematically Gifted

  • Cho Seok-Hee;Hwang Dong-Jou
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제10권1호
    • /
    • pp.55-70
    • /
    • 2006
  • The purpose of this study was to develop math creative problem solving test in order to identify the mathematically gifted on the basis of their math creative problem solving ability and evaluate the goodness of the test in terms of its reliability and validity of measuring creativity in math problem solving on the basis of fluency in producing valid solutions. Ten open math problems were developed requiring math thinking abilities such as intuitive insight, organization of information, inductive and deductive reasoning, generalization and application, and reflective thinking. The 10 open math test items were administered to 2,029 Grade 5 students who were recommended by their teachers as candidates for gifted education programs. Fluency, the number of valid solutions, in each problem was scored by math teachers. Their responses were analyzed by BIGSTEPTS based on Rasch's 1-parameter item-response model. The item analyses revealed that the problems were good in reliability, validity, difficulty, and discrimination power even when creativity was scored with the single criteria of fluency. This also confirmed that the open problems which are less-defined, less-structured and non-entrenched were good in measuring math creativity of the candidates for math gifted education programs. In addition, it discriminated applicants for two different gifted educational institutions and between male and female students as well.

  • PDF

협력 학습을 통한 문제 해결에서 해결 전략의 사용형태에 관한 대화 분석 (A Study on the Pattern of usage of Problem Solving Strategy according to Its Presentation)

  • 정민수;신현성
    • 한국학교수학회논문집
    • /
    • 제4권2호
    • /
    • pp.135-142
    • /
    • 2001
  • The selected questions for this study was their conversation in problem solving way of working together. To achieve its purpose researcher I chose more detail questions for this study as follows. $\circled1$ What is the difference of strategy according to its level \ulcorner $\circled2$ What is the mathematical ability difference in problem solving process concerning its level \ulcorner This is the result of the study $\circled1$ Difference in the strategy of each class of students. High class-high class students found rules with trial and error strategy, simplified them and restated them in uncertain framed problems, and write a formula with recalling their theorem and definition and solved them. High class-middle class students' knowledge and understanding of the problem, yet middle class students tended to rely on high class students' problem solving ability, using trial and error strategy. However, middle class-middle class students had difficulties in finding rules to solve the problem and relied upon guessing the answers through illogical way instead of using the strategy of writing a formula. $\circled2$ Mathematical ability difference in problem solving process of each class. There was not much difference between high class-high class and high class-middle class, but with middle class-middle class was very distinctive. High class-high class students were quick in understanding and they chose the right strategy to solve the problem High class-middle class students tried to solve the problem based upon the high class students' ideas and were better than middle class-middle class students in calculating ability to solve the problem. High class-high class students took the process of resection to make the answer, but high class-middle class students relied on high class students' guessing to reconsider other ways of problem-solving. Middle class-middle class students made variables, without knowing how to use them, and solved the problem illogically. Also the accuracy was relatively low and they had difficulties in understanding the definition.

  • PDF

한국과 미국 6학년 학생들의 직관적 사고에 의한 수학 문제해결 분석 (An Analysis on the Mathematical Problem Solving via Intuitive Thinking of the Korean and American 6th Grade Students)

  • 이대현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제55권1호
    • /
    • pp.21-39
    • /
    • 2016
  • This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.

Assessment of Mathematical Creativity in Mathematical Modeling

  • Jang, Hong-Shick
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제15권2호
    • /
    • pp.181-196
    • /
    • 2011
  • In mathematical modeling tasks, where students are exposed to model-eliciting for real and open problems, students are supposed to formulate and use a variety of mathematical skills and tools at hand to achieve feasible and meaningful solutions using appropriate problem solving strategies. In contrast to problem solving activities in conventional math classes, math modeling tasks call for varieties of mathematical ability including mathematical creativity. Mathematical creativity encompasses complex and compound traits. Many researchers suggest the exhaustive list of criterions of mathematical creativity. With regard to the research considering the possibility of enhancing creativity via math modeling instruction, a quantitative scheme to scale and calibrate the creativity was investigated and the assessment of math modeling activity was suggested for practical purposes.

초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계 (The Relationship between Mathematically Gifted Elementary Students' Math Creative Problem Solving Ability and Metacognition)

  • 신승윤;류성림
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제17권2호
    • /
    • pp.95-111
    • /
    • 2014
  • 본 연구의 목적은 초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계, 수학 창의적 문제해결력에 대한 메타인지 구성 요소별 영향력을 밝혀 수학 창의적 문제해결력을 향상시키기 위한 교수 방법으로서 메타인지적 접근에 대한 기초 정보를 제공하는 것이다. 연구 대상은 광역시 소재 대학교 영재교육원의 5학년 초등수학영재 40명과 초등학교 영재학급의 5학년 초등수학영재 40명으로 총 80명이다. 연구결과 초등수학영재 집단 안에서도 수학 창의적 문제해결력과 메타인지의 개인차가 크게 나타났으며 수학 창의적 문제해결력과 메타인지는 유의미한 상관 관계를 보였다. 또한 수학 창의적 문제해결력 전체에 상대적으로 가장 큰 영향을 미치는 메타인지 구성요소는 메타 인지적 지식으로 나타났고, 수학 창의적 문제해결력 중 유창성과 독창성 요소에 가장 큰 영향을 미치는 메타인지 구성요소는 메타인지적 지식이며, 융통성에 가장 큰 영향을 미치는 메타인지적 구성요소는 메타인지적 자기조정으로 나타났다. 메타인지적 경험은 상대적으로 적은 영향을 미치는 것으로 나타났다. 따라서 수학 창의적 문제해결력과 메타인지와의 관련성을 고려하여 초등수학영재의 창의적 문제해결력을 높일 수 있는 메타인지적 접근을 기반으로 한 구체적인 교육과정과 수학영재 교육 프로그램이 개발되어야 함을 시사하는 것이라 볼 수 있다.