References
- 교육과학기술부 (2008). 초등학교 교육과정 해설(IV). 교육과학기술부. (Ministry of Education and Science Technology (2008). Elementary curriculum(IV). Ministry of Education and Science Technology) .
- 김홍원.김명숙.방승진.황동주 (1997). 수학 영재 판별 도구 개발 연구(II)-검사 제작 편-한국교육 개발원 연구보고 CR-50. 한국교육개발원. (Kim, H. W., Kim, M. S., Bang, S. J., & Hwng, D. J. (1997). Development of math gifted determination tools (II). Korean Educational Development Institute.)
- 박주연 (2005). 과학에서 창의적 문제해결력과 아동의 메타인지와의 관계. 이화여자대학교 대학원 석사학위논문. (Park, J. Y. (2005). The relationship between the creative ploblem solving ability in science students' metacognition. Master dissertation, Ewha Womans University.)
- 박창한 (2009). 메타인지 전략을 기반으로 한 구체적 조작 중심의 문제해결식 수업이 초등학생의 성취 수준별 학업성취도와 학습태도에 미치는 영향. 경북대학교 교육대학원 석사학위논문. (Park, C. H. (2009). The effects of the achievement and attitude of elementary school student of teaching-learning centered on concrete operation activities based on the metacognition. Master dissertation, Kyungpook National University.)
- 박혜진.권혁직 (2010). 메타인지, 몰입과 수학 창의적 문제해결력 강의 구조적 관계 분석. 한국학교수학회논문집, 13(2). 205-224. (Park, H. J., & Kwean, H. J. (2010). An analysis of structural relationships between metacognition, flow, and mathematics creative problem solving ability. Journal of the Korean School Mathematics Society, 13(2), 205-224.)
- 송상헌 (1998). 수학 영재성 측정과 판별에 관한 연구. 서울대학교대학원 박사학위 논문. (Song, S. H. (1998). Study on the measurement and discrimination of the mathematical giftedness. Doctoral dissertation, Seoul National University.)
- 송해덕 (2007). 창의적 문제해결력의 구성요인과 교수 설계원리의 탐색. 열린교육연구, 15(3), 55-73. (Song, H. D. (2007). Instructional design principles for enhancing creative problem solving skills. Journal of Open Education, 15(3), 55-73.)
- 신은주.신선화.송상헌 (2007). 초등 수학 영재아들의 메타인지 사고 과정 사례 분석. 수학교육학연구, 17(3), 201-220. (Shin, E. J., Shin, S. H., & Song, S. H. (2007). A study on the cases of mathematically gifted elementary students' metacognitive thinking. Journal of Educational Research in Mathematics. 17(3), 201-220.)
- 이강섭.황동주 (2003). 일반 창의성과 수학 창의성과의 관련연구. 한국수학교육학회지 시리즈 A <수학교육>, 42(1), 1-9. (Lee, K. S., & Hwang, D. J. (2003). A study on the relationship between general creativity and mathematical creativity. The Mathematical Education. 42(1), 1-9.)
- 이봉주.고호경 (2009). 메타인지적 활동의 훈련을 통한 문제해결 과정에서의 사고 과정 분석 사례 연구. 한국학교수학회논문집, 12(3). 291-305. (Lee, B. J., & Ko, H. K. (2009). A case study of metacognitive strategy training on mathematical problem solving. Journal of the Korean School Mathematics Society, 12(3), 291-305.)
- 이은숙 (2013). 초등수학에서 메타문제의 해결과정에서 나타나는 인지.정의적 특성. 서울교육대학교 교육대학원 석사학위논문. (Lee, E. S. (2013). Cognitive and affective aspects of meta-problem solving process in elementary school mathematics. Master dissertation, Seoul National University of Education.)
- 조석희.황동주 (2007). 중학교 수학 영재 판별을 위한 수학 창의적 문제 해결력 검사개발. 영재교육연구, 17(1), 1-26. (Jo, S. H., & Hwang, D. J. (2007). Math creative problem solving ability test for identification of the mathematically gifted middle school students. Journal of Gifted Talented Education, 17(1), 1-26.)
- 최은희.김민경 (2006). 메타인지 전략을 활용한 수업 에서의 초등학생의 수학적 추론과 표현에 미치는 효과에 관한 연구. 교과교육학연구, 10(1), 191-207. (Choi, E. H., & Kim, M. K. (2006). Effects of instruction applicated metacognitive strategy on mathematical reasoning and representation ability in elementary school students. Curriculum Education Research, 10(1), 191-207.)
- 한길준.이영주 (2000). 초등학교 아동의 메타인지 수준과 수학적 문제해결력, 추론능력간의 관계. 교과교육연구, 4, 185-201. (Han, K. J., & Lee, Y. J. (2000). A study on correlations among metacognition level, mathematical problem-solving and reasoning ability in elementary school students. Journal of Research in School Subjects, 4, 185-201.)
- 한상욱.송상헌 (2011). 초등 수학 영재들이 문제해결 과정에서 보이는 메타인지 사례 연구. 한국초등수학교육, 15(2), 473-461. (Han, S. W., & Song, S. H. (2011). A case study on the metacognition of mathematically gifted elementary students in problem-solving process. Journal of Elementary Mathematics Education in Korea, 15(2), 473-461.)
- Brown, A. N. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F. E. Weinert, & R. H. Kluwe(Eds.), Metacognition, motivation and understanding. (pp. 65-116). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Davis, G. A., & Rimm, S. B. (1994). Education of the gifted and talented. Boston: Allyn and Bacon.
- Deridder, C. M. (1986). A study of selected factors to identify sixth grade students gifted in mathematics. Unpublished doctoral dissertation, University of Tennessee, Knoxville.
- Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquire. American Psychologist, 34, 906-911. https://doi.org/10.1037/0003-066X.34.10.906
- Johnsen, S. K., & Kendrick, J. (2005). Math education for gifted students. Prufrock Press, Inc.
- Kim, Y. (1998). The Torrance tests of creative thinking: Norms-technical manual of Korean version. ChungAng Aptitude Press.
- Kroll, D. L. (1988). Cooperative mathematical problem solving and metacognition: A case study of three paris of women. Doctoral Dissertation, India University.
- Lester, F. K., & Garofalo, J. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163-176. https://doi.org/10.2307/748391
- Miller, G. E. (1985). The effects of general specific self-instruction training on children' comprehension monitoring performances during reading. Reading Research Quarterly, 20(3), 61-628.
- NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: The National Council of Teacher of mathematics. Inc.
- O'Neil, H. F., & Brown, R. S. (1998). Differential effects of question formats in math assesment on metacognition and affect. Applied Measurement in Education, 11(4), 331-351. https://doi.org/10.1207/s15324818ame1104_3
- Russo, C. F. (2004). A comparative study of creativity and cognitive problem-solving strategies of high-IQ and average students. Gifted Child Quarterly, 48(3), 179-190. https://doi.org/10.1177/001698620404800303
- Shallcross, D. J. (1981). Teaching creative behavior. Englewood Cliffs, NJ : Prentice-Hall.
- Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press, Inc.
- Scheonfeld, A. H. (1987). What's all the fuss about metacognition? In A. H. Scheonfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlbaum.
- Silver, E. A. (1985). Research on teaching mathematical problem solving: Some underrepresented themes and needed direction. In E. A. silver (Eds.), Teaching and learning mathematical problem solving: Multiple reach perspectives (pp.56-58). Hillsdale, NJ: Lawrence Erlbaun Associates.
- Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem solving instruction. In A. H. Scheonfeld (Ed.), Cognitive science and mathematics education. Hillsdale, NJ: Lawrence Erlbaun Associates.
- Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The Journal of Secondary Gifted Education, 17, 20-36. https://doi.org/10.4219/jsge-2005-389
- Torrance, E. P. (1995). Why fly? Norwood, NJ: Ablex publishing Corporation.
- Zimeeerman B. J., & Matinez-Pons, N. (1988). Development of a structured interview for assessing student used of self-regulated learning strategies. American Educational Research Journal, 23, 614-628.
Cited by
- GSP를 활용한 중학교 2학년 수학 영재학급의 일반화 수업 분석과 교육적 시사점 - Viviani 정리를 중심으로 - vol.30, pp.1, 2014, https://doi.org/10.7468/jksmee.2016.30.1.23
- Issues and Discussions on Mathematics Gifted Child Education in U.S.: A Review vol.27, pp.2, 2014, https://doi.org/10.20972/kjee.27.2.201606.379
- 자기 조절 기반 문제 중심 초등 과학 프로그램의 개발 및 적용 vol.45, pp.4, 2014, https://doi.org/10.15717/bioedu.2017.45.4.453
- Analysis on the Relationship between Meta-cognition and Scientific Reasoning Skill for the Scientifically Gifted Students and the General Students in Elementary School vol.46, pp.4, 2018, https://doi.org/10.15717/bioedu.2018.46.4.524