DOI QR코드

DOI QR Code

The Relationship between Mathematically Gifted Elementary Students' Math Creative Problem Solving Ability and Metacognition

초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계

  • Received : 2014.03.17
  • Accepted : 2014.06.26
  • Published : 2014.08.31

Abstract

The purpose of this study is to determine the relationship between metacognition and math creative problem solving ability. Specific research questions set up according to the purpose of this study are as follows. First, what relation does metacognition has with creative math problem-solving ability of mathematically gifted elementary students? Second, how does each component of metacognition (i.e. metacognitive knowledge, metacognitive regulation, metacognitive experiences) influences the math creative problem solving ability of mathematically gifted elementary students? The present study was conducted with a total of 80 fifth grade mathematically gifted elementary students. For assessment tools, the study used the Math Creative Problem Solving Ability Test and the Metacognition Test. Analyses of collected data involved descriptive statistics, computation of Pearson's product moment correlation coefficient, and multiple regression analysis by using the SPSS Statistics 20. The findings from the study were as follows. First, a great deal of variability between individuals was found in math creative problem solving ability and metacognition even within the group of mathematically gifted elementary students. Second, significant correlation was found between math creative problem solving ability and metacognition. Third, according to multiple regression analysis of math creative problem solving ability by component of metacognition, it was found that metacognitive knowledge is the metacognitive component that relatively has the greatest effect on overall math creative problem-solving ability. Fourth, results indicated that metacognitive knowledge has the greatest effect on fluency and originality among subelements of math creative problem solving ability, while metacognitive regulation has the greatest effect on flexibility. It was found that metacognitive experiences relatively has little effect on math creative problem solving ability. This findings suggests the possibility of metacognitive approach in math gifted curricula and programs for cultivating mathematically gifted students' math creative problem-solving ability.

본 연구의 목적은 초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계, 수학 창의적 문제해결력에 대한 메타인지 구성 요소별 영향력을 밝혀 수학 창의적 문제해결력을 향상시키기 위한 교수 방법으로서 메타인지적 접근에 대한 기초 정보를 제공하는 것이다. 연구 대상은 광역시 소재 대학교 영재교육원의 5학년 초등수학영재 40명과 초등학교 영재학급의 5학년 초등수학영재 40명으로 총 80명이다. 연구결과 초등수학영재 집단 안에서도 수학 창의적 문제해결력과 메타인지의 개인차가 크게 나타났으며 수학 창의적 문제해결력과 메타인지는 유의미한 상관 관계를 보였다. 또한 수학 창의적 문제해결력 전체에 상대적으로 가장 큰 영향을 미치는 메타인지 구성요소는 메타 인지적 지식으로 나타났고, 수학 창의적 문제해결력 중 유창성과 독창성 요소에 가장 큰 영향을 미치는 메타인지 구성요소는 메타인지적 지식이며, 융통성에 가장 큰 영향을 미치는 메타인지적 구성요소는 메타인지적 자기조정으로 나타났다. 메타인지적 경험은 상대적으로 적은 영향을 미치는 것으로 나타났다. 따라서 수학 창의적 문제해결력과 메타인지와의 관련성을 고려하여 초등수학영재의 창의적 문제해결력을 높일 수 있는 메타인지적 접근을 기반으로 한 구체적인 교육과정과 수학영재 교육 프로그램이 개발되어야 함을 시사하는 것이라 볼 수 있다.

Keywords

References

  1. 교육과학기술부 (2008). 초등학교 교육과정 해설(IV). 교육과학기술부. (Ministry of Education and Science Technology (2008). Elementary curriculum(IV). Ministry of Education and Science Technology) .
  2. 김홍원.김명숙.방승진.황동주 (1997). 수학 영재 판별 도구 개발 연구(II)-검사 제작 편-한국교육 개발원 연구보고 CR-50. 한국교육개발원. (Kim, H. W., Kim, M. S., Bang, S. J., & Hwng, D. J. (1997). Development of math gifted determination tools (II). Korean Educational Development Institute.)
  3. 박주연 (2005). 과학에서 창의적 문제해결력과 아동의 메타인지와의 관계. 이화여자대학교 대학원 석사학위논문. (Park, J. Y. (2005). The relationship between the creative ploblem solving ability in science students' metacognition. Master dissertation, Ewha Womans University.)
  4. 박창한 (2009). 메타인지 전략을 기반으로 한 구체적 조작 중심의 문제해결식 수업이 초등학생의 성취 수준별 학업성취도와 학습태도에 미치는 영향. 경북대학교 교육대학원 석사학위논문. (Park, C. H. (2009). The effects of the achievement and attitude of elementary school student of teaching-learning centered on concrete operation activities based on the metacognition. Master dissertation, Kyungpook National University.)
  5. 박혜진.권혁직 (2010). 메타인지, 몰입과 수학 창의적 문제해결력 강의 구조적 관계 분석. 한국학교수학회논문집, 13(2). 205-224. (Park, H. J., & Kwean, H. J. (2010). An analysis of structural relationships between metacognition, flow, and mathematics creative problem solving ability. Journal of the Korean School Mathematics Society, 13(2), 205-224.)
  6. 송상헌 (1998). 수학 영재성 측정과 판별에 관한 연구. 서울대학교대학원 박사학위 논문. (Song, S. H. (1998). Study on the measurement and discrimination of the mathematical giftedness. Doctoral dissertation, Seoul National University.)
  7. 송해덕 (2007). 창의적 문제해결력의 구성요인과 교수 설계원리의 탐색. 열린교육연구, 15(3), 55-73. (Song, H. D. (2007). Instructional design principles for enhancing creative problem solving skills. Journal of Open Education, 15(3), 55-73.)
  8. 신은주.신선화.송상헌 (2007). 초등 수학 영재아들의 메타인지 사고 과정 사례 분석. 수학교육학연구, 17(3), 201-220. (Shin, E. J., Shin, S. H., & Song, S. H. (2007). A study on the cases of mathematically gifted elementary students' metacognitive thinking. Journal of Educational Research in Mathematics. 17(3), 201-220.)
  9. 이강섭.황동주 (2003). 일반 창의성과 수학 창의성과의 관련연구. 한국수학교육학회지 시리즈 A <수학교육>, 42(1), 1-9. (Lee, K. S., & Hwang, D. J. (2003). A study on the relationship between general creativity and mathematical creativity. The Mathematical Education. 42(1), 1-9.)
  10. 이봉주.고호경 (2009). 메타인지적 활동의 훈련을 통한 문제해결 과정에서의 사고 과정 분석 사례 연구. 한국학교수학회논문집, 12(3). 291-305. (Lee, B. J., & Ko, H. K. (2009). A case study of metacognitive strategy training on mathematical problem solving. Journal of the Korean School Mathematics Society, 12(3), 291-305.)
  11. 이은숙 (2013). 초등수학에서 메타문제의 해결과정에서 나타나는 인지.정의적 특성. 서울교육대학교 교육대학원 석사학위논문. (Lee, E. S. (2013). Cognitive and affective aspects of meta-problem solving process in elementary school mathematics. Master dissertation, Seoul National University of Education.)
  12. 조석희.황동주 (2007). 중학교 수학 영재 판별을 위한 수학 창의적 문제 해결력 검사개발. 영재교육연구, 17(1), 1-26. (Jo, S. H., & Hwang, D. J. (2007). Math creative problem solving ability test for identification of the mathematically gifted middle school students. Journal of Gifted Talented Education, 17(1), 1-26.)
  13. 최은희.김민경 (2006). 메타인지 전략을 활용한 수업 에서의 초등학생의 수학적 추론과 표현에 미치는 효과에 관한 연구. 교과교육학연구, 10(1), 191-207. (Choi, E. H., & Kim, M. K. (2006). Effects of instruction applicated metacognitive strategy on mathematical reasoning and representation ability in elementary school students. Curriculum Education Research, 10(1), 191-207.)
  14. 한길준.이영주 (2000). 초등학교 아동의 메타인지 수준과 수학적 문제해결력, 추론능력간의 관계. 교과교육연구, 4, 185-201. (Han, K. J., & Lee, Y. J. (2000). A study on correlations among metacognition level, mathematical problem-solving and reasoning ability in elementary school students. Journal of Research in School Subjects, 4, 185-201.)
  15. 한상욱.송상헌 (2011). 초등 수학 영재들이 문제해결 과정에서 보이는 메타인지 사례 연구. 한국초등수학교육, 15(2), 473-461. (Han, S. W., & Song, S. H. (2011). A case study on the metacognition of mathematically gifted elementary students in problem-solving process. Journal of Elementary Mathematics Education in Korea, 15(2), 473-461.)
  16. Brown, A. N. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F. E. Weinert, & R. H. Kluwe(Eds.), Metacognition, motivation and understanding. (pp. 65-116). Hillsdale, NJ: Lawrence Erlbaum Associates.
  17. Davis, G. A., & Rimm, S. B. (1994). Education of the gifted and talented. Boston: Allyn and Bacon.
  18. Deridder, C. M. (1986). A study of selected factors to identify sixth grade students gifted in mathematics. Unpublished doctoral dissertation, University of Tennessee, Knoxville.
  19. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquire. American Psychologist, 34, 906-911. https://doi.org/10.1037/0003-066X.34.10.906
  20. Johnsen, S. K., & Kendrick, J. (2005). Math education for gifted students. Prufrock Press, Inc.
  21. Kim, Y. (1998). The Torrance tests of creative thinking: Norms-technical manual of Korean version. ChungAng Aptitude Press.
  22. Kroll, D. L. (1988). Cooperative mathematical problem solving and metacognition: A case study of three paris of women. Doctoral Dissertation, India University.
  23. Lester, F. K., & Garofalo, J. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163-176. https://doi.org/10.2307/748391
  24. Miller, G. E. (1985). The effects of general specific self-instruction training on children' comprehension monitoring performances during reading. Reading Research Quarterly, 20(3), 61-628.
  25. NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: The National Council of Teacher of mathematics. Inc.
  26. O'Neil, H. F., & Brown, R. S. (1998). Differential effects of question formats in math assesment on metacognition and affect. Applied Measurement in Education, 11(4), 331-351. https://doi.org/10.1207/s15324818ame1104_3
  27. Russo, C. F. (2004). A comparative study of creativity and cognitive problem-solving strategies of high-IQ and average students. Gifted Child Quarterly, 48(3), 179-190. https://doi.org/10.1177/001698620404800303
  28. Shallcross, D. J. (1981). Teaching creative behavior. Englewood Cliffs, NJ : Prentice-Hall.
  29. Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press, Inc.
  30. Scheonfeld, A. H. (1987). What's all the fuss about metacognition? In A. H. Scheonfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlbaum.
  31. Silver, E. A. (1985). Research on teaching mathematical problem solving: Some underrepresented themes and needed direction. In E. A. silver (Eds.), Teaching and learning mathematical problem solving: Multiple reach perspectives (pp.56-58). Hillsdale, NJ: Lawrence Erlbaun Associates.
  32. Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem solving instruction. In A. H. Scheonfeld (Ed.), Cognitive science and mathematics education. Hillsdale, NJ: Lawrence Erlbaun Associates.
  33. Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The Journal of Secondary Gifted Education, 17, 20-36. https://doi.org/10.4219/jsge-2005-389
  34. Torrance, E. P. (1995). Why fly? Norwood, NJ: Ablex publishing Corporation.
  35. Zimeeerman B. J., & Matinez-Pons, N. (1988). Development of a structured interview for assessing student used of self-regulated learning strategies. American Educational Research Journal, 23, 614-628.

Cited by

  1. GSP를 활용한 중학교 2학년 수학 영재학급의 일반화 수업 분석과 교육적 시사점 - Viviani 정리를 중심으로 - vol.30, pp.1, 2014, https://doi.org/10.7468/jksmee.2016.30.1.23
  2. Issues and Discussions on Mathematics Gifted Child Education in U.S.: A Review vol.27, pp.2, 2014, https://doi.org/10.20972/kjee.27.2.201606.379
  3. 자기 조절 기반 문제 중심 초등 과학 프로그램의 개발 및 적용 vol.45, pp.4, 2014, https://doi.org/10.15717/bioedu.2017.45.4.453
  4. Analysis on the Relationship between Meta-cognition and Scientific Reasoning Skill for the Scientifically Gifted Students and the General Students in Elementary School vol.46, pp.4, 2018, https://doi.org/10.15717/bioedu.2018.46.4.524