• 제목/요약/키워드: M-integral

검색결과 663건 처리시간 0.022초

FREDHOLM-VOLTERRA INTEGRAL EQUATION WITH SINGULAR KERNEL

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.163-174
    • /
    • 1999
  • The purpose of this paper is to obtain the solution of Fredholm-Volterra integral equation with singular kernel in the space $L_2(-1, 1)\times C(0,T), 0 \leq t \leq T< \infty$, under certain conditions,. The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernel using the Toeplitz matrices. Also the error estimate is computed and some numerical examples are computed using the MathCad package.

THE ANALYTIC FEYNMAN INTEGRAL OVER PATHS ON ABSTRACT WIENER SPACE

  • Yoo, Il
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.93-107
    • /
    • 1995
  • In their paper [2,3], Cameron and Storvick introduced some classes $S"+m$ and of functionals on classical Wiener spaces $C_0[a,b]$. For such functionals, they showed that the analytic Feynman integral exists and they gave some formulas for this integral. Moreover they obtained that the functionals of the form $$ (1.1) F(x) = exp {\int^b_a{\theta(s,x(x))dx} $$ are in S" where they assumbed that the potential $\delta : [a,b] \times R \to C$ satisfies (i) for each $s \in [a,b], \theta(s,\cdot)$ is the Fourier-Stieltjes transform of $\sigma_s \in M(R)$, (ii) for each Borel subset E of $[a,b] \times R, \sigma_s (E^{(s)})$ is a Borel measurable function of s on [a,b], and (iii) the total variation $\Vert \sigma_s \Vert$ of $\sigma_s$ is bounded as a function of s.tion of s.

  • PDF

USING CROOKED LINES FOR THE HIGHER ACCURACY IN SYSTEM OF INTEGRAL EQUATIONS

  • Hashemiparast, S.M.;Sabzevari, M.;Fallahgoul, H.
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.145-159
    • /
    • 2011
  • The numerical solution to the linear and nonlinear and linear system of Fredholm and Volterra integral equations of the second kind are investigated. We have used crooked lines which includ the nodes specified by modified rationalized Haar functions. This method differs from using nominal Haar or Walsh wavelets. The accuracy of the solution is improved and the simplicity of the method of using nominal Haar functions is preserved. In this paper, the crooked lines with unknown coefficients under the specified conditions change the system of integral equations to a system of equations. By solving this system the unknowns are obtained and the crooked lines are determined. Finally, error analysis of the procedure are considered and this procedure is applied to the numerical examples, which illustrate the accuracy and simplicity of this method in comparison with the methods proposed by these authors.

CERTAIN NEW INTEGRAL FORMULAS INVOLVING THE GENERALIZED BESSEL FUNCTIONS

  • Choi, Junesang;Agarwal, Praveen;Mathur, Sudha;Purohit, Sunil Dutt
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.995-1003
    • /
    • 2014
  • A remarkably large number of integral formulas involving a variety of special functions have been developed by many authors. Also many integral formulas involving various Bessel functions have been presented. Very recently, Choi and Agarwal derived two generalized integral formulas associated with the Bessel function $J_{\nu}(z)$ of the first kind, which are expressed in terms of the generalized (Wright) hypergeometric functions. In the present sequel to Choi and Agarwal's work, here, in this paper, we establish two new integral formulas involving the generalized Bessel functions, which are also expressed in terms of the generalized (Wright) hypergeometric functions. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions.

FRACTIONAL CALCULUS AND INTEGRAL TRANSFORMS OF THE M-WRIGHT FUNCTION

  • KHAN, N.U.;KASHMIN, T.;KHAN, S.W.
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.341-349
    • /
    • 2019
  • This paper is concerned to investigate M-Wright function, which was earlier known as transcendental function of the Wright type. M-Wright function is a special case of the Wright function given by British mathematician (E.Maitland Wright) in 1933. We have explored the cosequences of Riemann-Liouville Integral and Differential operators on M-Wright function. We have also evaluated integral transforms of the M-Wright function.

THE DISCRETE SLOAN ITERATE FOR CAUCHY SINGULAR INTEGRAL EQUATIONS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제2권2호
    • /
    • pp.81-95
    • /
    • 1998
  • The superconvergence of the Sloan iterate obtained from a Galerkin method for the approximate solution of the singular integral equation based on the use of two sets of orthogonal polynomials is investigated. The discrete Sloan iterate using Gaussian quadrature to evaluate the integrals in the equation becomes the Nystr$\ddot{o}$m approximation obtained by the same rules. Consequently, it is impossible to expect the faster convergence of the Sloan iterate than the discrete Galerkin approximation in practice.

  • PDF

SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC FUNCTION

  • Rao, Snehal B.;Patel, Amit D.;Prajapati, Jyotindra C.;Shukla, Ajay K.
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.303-317
    • /
    • 2013
  • In present paper, we obtain functions $R_t(c,{\nu},a,b)$ and $R_t(c,-{\mu},a,b)$ by using generalized hypergeometric function. A recurrence relation, integral representation of the generalized hypergeometric function $_2R_1(a,b;c;{\tau};z)$ and some special cases have also been discussed.

THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC BEHAVIOR OF A FOURIER INTEGRAL

  • Ki, Ha-Seo;Kim, Young-One
    • 대한수학회지
    • /
    • 제44권2호
    • /
    • pp.455-466
    • /
    • 2007
  • The zero-distribution of the Fourier integral $${\int}^{\infty}_{-{\infty}}\;Q(u)e^{p(u)+^{izu}du$$, where P is a polynomial with leading term $-u^{2m}(m\;{\geq}\;1)$ and Q an arbitrary polynomial, is described. To this end, an asymptotic formula for the integral is established by applying the saddle point method.

Existence of Solutions of Integral and Fractional Differential Equations Using α-type Rational F-contractions in Metric-like Spaces

  • Nashine, Hemant Kumar;Kadelburg, Zoran;Agarwal, Ravi P.
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.651-675
    • /
    • 2018
  • We present ${\alpha}$-type rational F-contractions in metric-like spaces, and respective fixed and common fixed point results for weakly ${\alpha}$-admissible mappings. Useful examples illustrate the effectiveness of the presented results. As applications, we obtain sufficient conditions for the existence of solutions of a certain type of integral equations followed by examples of nonlinear fractional differential equations that are verified numerically.