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FRACTIONAL CALCULUS AND INTEGRAL TRANSFORMS

OF THE M-WRIGHT FUNCTION

N.U. KHAN∗, T. KASHMIN AND S.W. KHAN

Abstract. This paper is concerned to investigate M -Wright function,

which was earlier known as transcendental function of the Wright type.

M -Wright function is a special case of the Wright function given by British
mathematician (E.Maitland Wright) in 1933. We have explored the cose-

quences of Riemann-Liouville Integral and Differential operators on M -

Wright function. We have also evaluated integral transforms of the M -
Wright function.
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1. Introduction and Preliminaries

Some authors including Podlubny [8], Gorenflo et al. [10], [11] Germano et al.
[6] and Kiryakova [12], [13] refer to the M-Wright function as Mainradi function.
In 1994 a renowned mathematician suggested to Mainardi, that the function
which was named after him was already discovered by E.Maitland Wright in
1940 [1]. Mainardi, in his first analysis of the time-fractional diffusion equation
[2]-[5], in the Caputo sense, introduced the two Wright-type functions Fα(z) and
Mα(z), as

Fα(z) = W-α,0(-z), 0 < α < 1 (1)

Mα(z) = W-α,1-α(-z), 0 < α < 1 (2)

where z is a complex variable and α is a real parameter such that 0 < α < 1.
Both functions turn out to be analytic in the whole complex plane, i.e. they are
the entire functions interrelated through

Fα(z) = αzMα(z) (3)
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As a matter of fact, these functions Fα(z) and Mα(z) are particular cases of
the Wright function of the second kind Wλ,µ(z) [1],i.e.

Wλ,µ(z) =

∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C, z ∈ C (4)

by setting λ = -α and µ = 0 or µ = 1-α, respectively. Their series represen-
tations are:

Fα(z) =

∞∑
n=1

(-z)n

n!Γ(-αn)
=

1

π

∞∑
n=1

(-z)n−1

(n)!
Γ(αn+ 1) sin(παn) (5)

Mα(z) =

∞∑
n=0

(-z)n

n!Γ(-α(n+ 1) + 1)
=

1

π

∞∑
n=1

(-z)n−1

(n− 1)!
Γ(αn) sin(παn) (6)

The noteworthy particular case is

M1/2(z) =
1√
π

exp

(
−z2

4

)
(7)

M1/3(z) = 32/3Ai
( z

31/3

)
(8)

For α = 1
2 ,

1
3 Mα(z) reduce respectively to the well known Gaussian and Airy

function [1]. In view of its properties our function can be considered as a gener-
alized hyper-airy function.
Further properties of theM -Wright function can be found in the book of Mainardi
[2], especially in Chapter 6 and Appendix F , and in the review paper [5]. In
the literature, the M -Wright function Mν(z) is also referred to as the Mainardi
function. This name was was originally introduced in the community of frac-
tional analysis by Podlubny [8].
The Euler transform and Laplace transform [7] of the function f(z) is defined as

B[f(z) : a, b] =

∫ 1

0

za−1(1− z)b−1f(z)dz (9)

L[f(z); s] =

∫ ∞
0

e−szf(z)dz (10)

2. Fractional Calculus Operators

Fractional calculus is the branch of mathematical analysis. Which deals
with pseudodifferential operators that extend the standard notions of integrals
and derivatives to any noninteger order. In this section, we introduce frac-
tional integrals and differentials of the M -Wright function (6). The operator of
Riemann-Liouville fractional integrals and derivatives given by Samko, Kilbas
and Marichev [9, section,5.1], for α ∈ C (<(α) > 0), are defined by

(Iαo+f)(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, (x > 0) (11)
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(Iαo−f)(x) =
1

Γ(α)

∫ ∞
x

f(t)

(t− x)1−α
dt, (x > 0) (12)

(Dα
0+f)(x) =

(
d

dx

)[<(α)]+1

(I
1−α+[<(α)]
0+ f)(x)

=

(
d

dx

)[<(α)]+1
1

Γ(1− α+ [<(α)])

∫ x

0

f(t)

(x− t)α−[<(α)]
dt, (x > 0) (13)

and

(Dα
0−f)(x) =

(
− d

dx

)[<(α)]+1

(I
1−α+[<(α)]
0− f)(x)

=

(
− d

dx

)[<(α)]+1
1

Γ(1− α+ [<(α)])

∫ ∞
x

f(t)

(x− t)α−[<(α)]
dt, (x > 0) (14)

respectively, where [<(α)] is the integral part of <(α).

3. Fractional integration of the M-Wright function

In this section we establish a formula for the fractional integration of the the
M -Wright function (6) and Wright function of the second kind (4).

Theorem 3.1. Let α, β ∈ C,<(α) > 0 and 0 < β < 1, then the fractional
integration (Iα0+) of the M -Wright function (6) holds true:(

Iα0+[t−βMβ(at−β)]
)

(x) = x−β+αW−β,α−β+1(−ax−β) , (x > 0) (15)

Proof. By virtue of (6) and (11), we have(
Iα0+[t−βMβ(at−β)]

)
(x) =

1

Γ(α)

∫ x

0

(x− t)α−1
∞∑
k=0

(−1)kakt−β−βk

k!Γ(−β(k + 1) + 1)
dt

=
1

Γ(α)

∞∑
k=0

(−1)kak

k!Γ(−β(k + 1) + 1)

∫ x

0

(x− t)α−1t−β−βkdt (16)

Interchanging the the order of integration and summation and then evaluating
the integral by modified beta function defined as:∫ b

a

(b− t)β−1(t− a)α−1dt = (b− a)α+β−1B(α, β), for <(α) > 0,<(β) > 0 (17)

thus equation (16) reduces to

= x−β+α
∞∑
k=0

(−1)k(ax−β)k

k!Γ(−β(k + 1) + 1)

Γ(−β(k + 1) + 1)

Γ(−β(k + 1) + (1 + α))

= x−β+α
∞∑
k=0

(−1)k(ax−β)k

k!Γ(−β(k + 1) + (1 + α))

Using the equation (4), we deduce

= x−β+αW−β,α−β+1(−ax−β) (18)
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This completes the proof of the Theorem 3.1
�

Theorem 3.2. Let α, β ∈ C,<(α) > 0 and 0 < β < 1, then the fractional
integration (Iαo−) of the Wright function of the second kind (4) holds true:(

Iα0−[tβ−1W−β,−α−β+1(atβ)]
)

(x) = xα+β−1Mβ(axβ), (x > 0) (19)

Proof. By virtue of (4) and (12), we have(
Iα−[tβ−1W−β,−α−β+1(atβ)]

)
(x)

=
1

Γ(α)

∫ ∞
x

(t− x)α−1
∞∑
k=0

aktβ+βk−1

k!Γ(−β(k + 1) + (1− α))
dt

=
1

Γ(α)

∞∑
k=0

ak

k!Γ(−β(k + 1) + (1− α))

∫ ∞
x

(t− x)α−1tβ+βk−1dt (20)

Let u = (t− x)/t, then

(
Iα−[tβ−1W−β,−α−β+1(atβ)]

)
(x) =

1

Γ(α)

∞∑
k=0

akxα+β+βk−1

k!Γ(−β(k + 1) + (1− α))

×
∫ 1

0

uα−1(1− u)(−α−β−βk+1)−1du

Evaluating the inner integral and using beta function formula, we get

=
1

Γ(α)

∞∑
k=0

akxα+β+βk−1

k!Γ(−β(k + 1) + (1− α))
B(α,−α− β − βk + 1)

= xα+β−1
∞∑
k=0

akxβk

k!Γ(−β(k + 1) + (1− α))

Γ(−β(k + 1) + (1− α))

Γ(−β(k + 1) + 1)

= xα+β−1
∞∑
k=0

(axβ)k

k!Γ(−β(k + 1) + 1)

Upon using (6), we deduce

= xα+β−1Mβ(−axβ) (21)

This completes the proof of Theorem 3.2 �
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4. Fractional differentiation of the M-Wright function

We are presenting the following formulas for the fractional differentiation of
the M -Wright function (6) and Wright function of the second kind (4).

Theorem 4.1. Let α, β ∈ C;<(α) > 0 and 0 < β < 1, then the fractional
differentiation (Dα

0+) of the M -Wright function (6) holds true:

(Dα
0+[t−βMβ(at−β)])(x) = x−β−αW−β,−α−β+1(−ax−β), x > 0 (22)

Proof. By using the definition of the M -Wright function (6) and fractional de-
rivative formula (13), we have

(Dα
0+[t−βMβ(at−β)])(x) =

(
d

dx

)n
(In−α0+ (Mβ(at−β))(x), n = 1 + {<(α)}

=

(
d

dx

)n
1

Γ(n− α)

∫ x

0

(x− t)n−α−1
∞∑
k=0

(−1)kakt−β−βk

k!Γ(−β(k + 1) + 1)
(23)

Interchanging the order of integration and summations and evaluating the inner
integral by the use of the modified beta function formula, we obtain

=
1

Γ(n− α)

∞∑
k=0

(−1)kak

k!Γ(−β(k + 1) + 1)

×
(
d

dx

)n
x−β−βk+n−αB(−β − βk + 1, n− α)

=

∞∑
k=0

(−1)kak

k!Γ(−β − βk + 1 + n− α)

(
d

dx

)n
x−β−βk+n−α

= x−β−α
∞∑
k=0

(−1)k(ax−β)k

k!Γ(−β(k + 1) + (1− α))

Upon using (6) deduce (22).

= x−β−αW−β,−α−β+1(−ax−β) (24)

This completes the proof of the Theorem 4.1
�

Theorem 4.2. Let α, β ∈ C,<(α) > 0 and 0 < β < 1, then the fractional
differentiation (Dα

0−) of the Wright function of the second kind (4) holds true :

(Dα
0−[tβ−1W−β,α−β+1(atβ)])(x) = xβ−α−1Mβ(−axβ) (25)

Proof. By virtue of (4) and (14), we obtain

(Dα
0−[tβ−1W−β,α−β+1(atβ)])(x) =

(
− d

dx

)n (
In−α0− [tβ−1W−β,α−β+1(atβ)]

)
(x)

= (−1)n
(
d

dx

)n
1

Γ(n− α)



346 N.U. Khan, T. Kashmin and S.W. Khan

×
∞∑
k=0

ak

k!Γ(−β(k + 1) + (1 + α))

∫ ∞
x

tβ+βk−1(t− x)n−α−1dt (26)

if we set u = (t− x)/t, then the above expression transform into the form

I = (−1)n
(
d

dx

)n
1

Γ(n− α)

×
∞∑
k=0

akxn+β+βk−α−1

k!Γ(−β(k + 1) + (1 + α))

∫ 1

0

un−α−1(1− u)α−β−βk−ndu

= (−1)n
(
d

dx

)n
1

Γ(n− α)

×
∞∑
k=0

akxn+β+βk−α−1

k!Γ(−β(k + 1) + (1 + α))
B(n− α, α− β − βk − n+ 1)

=

∞∑
k=0

ak

k!Γ(−β(k + 1) + (1 + α))

Γ(−β − βk + 1 + α− n)

Γ(−β − βk + 1)

×(−1)n
(
d

dx

)n
xn+β+βk−α−1

=

∞∑
k=0

ak

k!Γ(−β(k + 1) + (1 + α))

Γ(−β − βk + 1 + α− n))

Γ(−β − βk + 1)

×(n+ β + βk − α− 1).....(n+ β + βk − α− 1− n+ 1)xβ+βk−α−1

= (−1)n
∞∑
k=0

ak

k!Γ(−β(k + 1) + (1 + α))

Γ(−β − βk + 1 + α− n)

Γ(−β − βk + 1)

×(−1)n(1 + α− β − βk − n)n x
β+βk−α−1

= xβ−α−1
∞∑
k=0

(axβ)k

k!Γ(−β(k + 1) + 1)

By using (6), we get

= xβ−α−1Mβ(−axβ) (27)

This completes the proof of the Theorem 4.2



Fractional Calculus and Integral Transforms of the M-Wright Function 347

5. Integral transforms of the M-Wright function

In this section we investigate Euler transform and Laplace transform of the
M-Wright function.

Theorem 5.1. Let 0 < α < 1 and z ∈ C, the Euler transform of the M-Wright
function is

B[Mα(zα) : −α+ 1, 1] = W−α,−α+2(1) (28)

Proof. Applying (9) and (6), we have

B[Mα(z−α) : −α+ 1, 1] =

∫ 1

0

z−α+1−1(1− z)1−1
∞∑
n=0

(−z−α)n

Γ(−α(n+ 1) + 1)n!
dz

Reciprocating the integration and summation which is verified under given con-
ditions

∞∑
n=0

(−1)n

Γ(−α(n+ 1) + 1)n!

∫ 1

0

z−α(n+1)dz

Applying (17) we achieve our result in view of (4). �

Corollary 5.2. Put α = 1
2 in (28), we get∫ 1

0

z−
1
2 e−

1
4z =

√
π1Ψ1

 (1, 0);

( 3
2 ,−

1
2 );

− 1


Corollary 5.3. Put α = 1

3 in (28), we get∫ 1

0

z−
1
3Ai

(
z−

1
3

3
1
3

)
= 3

2
3 1Ψ1

 (1, 0);

( 1
2 ,−

3
2 );

− 1


Where 1Ψ1 is the Wright-hypergeometric function.

Theorem 5.4. Let α < 1 and | sα |< ∞, the Laplace transform of M-Wright
function is

L[Mα(z−α); s] = sα0F1(−; 1; sα) (29)

where 0F1 is transformed form of confluent hypergeometric function.

Proof. Applying (10) and (6), we have

L[Mα(z−α); s] =

∫ ∞
0

e−sz
∞∑
n=0

(−z−α)n

Γ(−α(n+ 1) + 1)n!
dz

Reciprocating the integration and summation which is verified under given con-
ditions

=

∞∑
n=0

(−1)n

Γ(−α(n+ 1) + 1)n!

∫ ∞
0

e−szz−α(n+1)dz

= sα
∞∑
n=0

(−sα)n

(1)n
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= sα0F1(−; 1; sα)

�

Corollary 5.5. Put α = 1
2 in (29), we get∫ ∞
0

e−sz−
1
4z =

√
πs

1
2 e−s

1/2

Corollary 5.6. Put α = 1
3 in (29), we get∫ ∞

0

e−szAi

(
z−

1
3

3
1
3

)
= 3

2
3 s

1
3 e−s

1/3

Conclusion

In the present paper we have built up the Riemann-Liouville fractional in-
tegral and derivatives of M -Wright function (6). Also we have evaluated the
Laplace and Euler transforms of the M -Wright function. The fractional calculus
also finds applications in different fields of science, including theory of fractals,
numerical analysis, physics, engineering, biology, economics and finance. The
results in this paper may as well detect certain utility in above fields.
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