• Title/Summary/Keyword: M-hyponormal

Search Result 16, Processing Time 0.026 seconds

ANALYTIC EXTENSIONS OF M-HYPONORMAL OPERATORS

  • MECHERI, SALAH;ZUO, FEI
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.233-246
    • /
    • 2016
  • In this paper, we introduce the class of analytic extensions of M-hyponormal operators and we study various properties of this class. We also use a special Sobolev space to show that every analytic extension of an M-hyponormal operator T is subscalar of order 2k + 2. Finally we obtain that an analytic extension of an M-hyponormal operator satisfies Weyl's theorem.

ON THE JOINT WEYL AND BROWDER SPECTRA OF HYPONORMAL OPERTORS

  • Lee, Young-Yoon
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.235-241
    • /
    • 2001
  • In this paper we study some properties of he joint Weyl and Browder spectra for the slightly larger classes containing doubly commuting n-tuples of hyponormal operators.

  • PDF

A SUFFICIENT CONDITION FOR HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE

  • Sumin Kim;Jongrak Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1019-1031
    • /
    • 2024
  • In this paper we consider the sufficient condition for hyponormal Toeplitz operators T𝛗 with non-harmonic symbols $${\varphi}(z)=\sum_{\ell=1}^{k}{\alpha}_{\ell}z^{{m_{\ell}}{\bar{z}}n_{\ell}}$$ with m-n = δ > 0 for all 1 ≤ ℓ ≤ k, and α ∈ ℂ on the Bergman spaces. In particular, we will observe the characteristics of the hyponormality of the Toeplitz operators T𝛗 according to the positional relationship of the coefficients α's.

ON JOINT WEYL AND BROWDER SPECTRA

  • Kim, Jin-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.53-62
    • /
    • 2000
  • In this paper we explore relations between joint Weyl and Browder spectra. Also, we give a spectral characterization of the Taylor-Browder spectrum for special classes of doubly commuting n-tuples of operators and then give a partial answer to Duggal's question.

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

BACKWARD EXTENSIONS OF BERGMAN-TYPE WEIGHTED SHIFT

  • Li, Chunji;Qi, Wentao;Wang, Haiwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.81-93
    • /
    • 2020
  • Let m ∈ ℕ0, p > 1 and $${\alpha}^{[m,p]}(x)\;:\;{\sqrt{x}},\;\{{\sqrt{\frac{(m+n-1)p-(m+n-2)}{(m+n)p-(m+n-1)}}}\}^{\infty}_{n=1}$$. In this paper, we consider the backward extensions of Bergman-type weighted shift Wα[m,p](x). We consider its subnormality, k-hyponormality and positive quadratic hyponormality. Our results include all the results on Bergman weighted shift Wα(x) with m ∈ ℕ and $${\alpha}(x)\;:\;{\sqrt{x}},\;{\sqrt{\frac{m}{m+1}},\;{\sqrt{\frac{m}{m+2}},\;{\sqrt{\frac{m+2}{m+3}},{\cdots}$$.

POSINORMAL TERRACED MATRICES

  • Rhaly, H. Crawford, Jr.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.117-123
    • /
    • 2009
  • This paper is a study of some properties of a collection of bounded linear operators resulting from terraced matrices M acting through multiplication on ${\ell}^2$; the term terraced matrix refers to a lower triangular infinite matrix with constant row segments. Sufficient conditions are found for M to be posinormal, meaning that $MM^*=M^*PM$ for some positive operator P on ${\ell}^2$; these conditions lead to new sufficient conditions for the hyponormality of M. Sufficient conditions are also found for the adjoint $M^*$ to be posinormal, and it is observed that, unless M is essentially trivial, $M^*$ cannot be hyponormal. A few examples are considered that exhibit special behavior.

A Note on Subnormal and Hyponormal Derivations

  • Lauric, Vasile
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.281-286
    • /
    • 2008
  • In this note we prove that if A and $B^*$ are subnormal operators and is a bounded linear operator such that AX - XB is a Hilbert-Schmidt operator, then f(A)X - Xf(B) is also a Hilbert-Schmidt operator and $${\parallel}f(A)X\;-\;Xf(B){\parallel}_2\;\leq\;L{\parallel}AX\;-\;XB{\parallel}_2$$, for f belonging to a certain class of functions. Furthermore, we investigate the similar problem in the case that S, T are hyponormal operators and $X\;{\in}\;\cal{L}(\cal{H})$ is such that SX - XT belongs to a norm ideal (J, ${\parallel}\;{\cdot}\;{\parallel}_J$) and prove that f(S)X - Xf(T) $\in$ J and ${\parallel}f(S)X\;-\;Xf(T){\parallel}_J\;\leq\;C{\parallel}SX\;-\;XT{\parallel}_J$, for f in a certain class of functions.