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POSINORMAL TERRACED MATRICES
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Dedicated to Professor Russell A. Stokes

ABSTRACT. This paper is a study of some properties of a collection of
bounded linear operators resulting from terraced matrices M acting
through multiplication on £2; the term terraced matriz refers to a lower
triangular infinite matrix with constant row segments. Sufficient condi-
tions are found for M to be posinormal, meaning that M M*=M*PM for
some positive operator P on £2; these conditions lead to new sufficient
conditions for the hyponormality of M. Sufficient conditions are also
found for the adjoint M* to be posinormal, and it is observed that, un-
less M is essentially trivial, M* cannot be hyponormal. A few examples
are considered that exhibit special behavior.

1. Introduction

Assume that ¢ = {a,} is a sequence of complex numbers such that the ter-
raced matriz M, a lower triangular infinite matrix with constant row segments,
acts through multiplication to give a bounded linear operator on £2.

ap 0 0
a; ap 0
M = M(a) = az Qs Qs

These matrices have been studied in [4, 6]. The best-known terraced matrix,
the Cesaro matrix C, occurs when a, = nL_H for all n > 0; in [1] it is proved
that C is a bounded linear operator on 2 and that C is hyponormal.

For an operator M on £? to be posinormal, there must exist a positive
operator P on £? satisfying M M* = M*PM. These operators were introduced
and studied in [7], where it was observed that the set of all posinormal operators
on £2 is an enormous collection that includes every invertible operator and all
the hyponormal operators, although the immensity was overstated regarding
weighted shifts, as has been noted in [3]; the correct statement is the following.
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Proposition 1.1. Every unilateral weighted shift with weight sequence {wy}

satisfying sup,, | wfil | < +00 is posinormal.

The sup condition ensures the boundedness of the interrupter P.
Recall that M is said to be hyponormal on £2 if

([M*, M]f, f) = (M*M — MM*)f,f) > 0

for all f in ¢2. In this study, we will find sufficient conditions for a terraced
matrix M to be posinormal, and this will lead us to new sufficient conditions
for M to be hyponormal.

Example 1.1. Before proceeding, we observe that not all terraced matrices
are posinormal. For consider the matrix M associated with a sequence having
ap = 0 and a; > 0, and take f = eg—e; where {e, } is the standard orthonormal
basis for £2. Then Mf = 0 while M*f = —a;(eg + €1), so f € KerM but
f ¢ KerM*. Thus M cannot be posinormal (see [7, Corollary 2.3]).

2. Main results

The first theorem will present sufficient conditions for the posinormality of
a terraced matrix.

Theorem 2.1. Ifa = {a,} is a positive decreasing sequence that converges to
0 and {(n+1)(1 - %)} is a bounded sequence, then M = M (a) is posinormal.

Proof. We will display an operator B on ¢? that satisfies M* = BM; conse-
quently, M = M*B* also, and it will follow from [7, Theorem 2.1] that M is
posinormal.
We define B = [by,n] by
1- “Z% if m<mn;
b =4 —2E if m=n+1;

0 if m>n+1.
We must show that B is a bounded operator on ¢2. Let R = M(s) where
s={1- ‘—lla‘? :n=0,1,2,...}, so R is a terraced matrix with all of its entries
nonnegative. Since the diagonal matrix D with diagonal{(n + 1)(1 — fatl) .
n=0,1,2,...} is bounded, R = DC is bounded. We observe that (B*—R) is
the adjoint of a unilateral weighted shift; since {a,} is positive and decreasing,
(B*—R) is bounded. Therefore B* = R + (B*—R) is a bounded operator,
and hence B is bounded also. A direct computation shows that M* = BM, as
needed. a

For fixed p > 1, the p-Cesiro matrix is the terraced matrix associated with
the sequence defined by a,, = m for all n. These matrices were studied in
[5] and in [7], which contains a proof of the next result.

Corollary 2.1. If M is a p-Cesdro matriz for some fized p > 1, then M is
posinormal.
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Proof. The hypothesis of the theorem is satisfied since 1 — EZE;Z < B5 forall

n and for all p > 1 (see [2, Theorem 42, 2.15.3, page 40]). O

Corollary 2.2. If a = {a,} is a positive decreasing sequence that converges
to 0 and {na,} is an increasing sequence that converges to L < +o0, then
M = M(a) is posinormal.

Example 2.1. We consider the case where a = {a,} is determined as follows:
Choose ag in (0,1) and then define the rest of the sequence recursively by a1
= an(l — a,). It can be shown that the sequence {na,} is increasing to 1, so
M = M (a) is posinormal by Corollary 2.2. Also it can be verified that BB* is
the diagonal operator with diagonal {ag, 1 —ag, 1 —a;, 1 —as, ...} and hence
B* is a contraction. It follows that B is also a contraction and therefore M
= M(a) is hyponormal for this choice of a. We note that a different approach
was used in (8] to show that this operator is hyponormal.

What we saw in Example 2.1 encourages us to continue looking at B in
hopes of discovering more examples of terraced matrices that are hyponormal.
It turns out that, with a strengthening of the conditions in the hypothesis of
Corollary 2.2, we are led to new sufficient conditions for the hyponormality of
M, as presented in the next theorem. The proof relies on our knowledge of B.

Theorem 2.2. Assume a = {a,} is a sequence that satisfies the following:

(1) {an} is a strictly decreasing sequence that converges to 0;
(2) {(n+1)a,} is a strictly increasing sequence that converges to L < +oo;

and
(3) an1+1 > %(% + a,}“) for all n.

Then M = M(a) is hyponormal.

Proof. We know that, because of conditions (1) and (2), M is posinormal
with M* = BM; the entries of B are described in the proof of Theorem 2.1.
For M to be hyponormal, we must have (M*M — MM*)f, f) = (M*M —
(M*B*)(BM))f, f) = (I = B*BYM f,M f) > 0 for all f in £2. Consequently,
we can conclude that M will be hyponormal when Q = I — B*B > 0; we note
that the range of M contains all the e,’s from the standard orthonormal basis
for £2.

The entries of Q = [gmn] are given by

(an_an+1)((7;‘£2)an+1"nan) if m= n;
Qmn = (am_am+1)((n;'2()1a"+1_(n+1)a") if m > n;
(an—=8n+1)(M+2)@mi1—(m+1am,) £ m<n.
Am An,
In order to show that @ is positive, it suffices to show that Qy, the N** finite
section of Q (involving rows m = 0,1,2,..., N and columns n = 0,1,2,...,N),

has positive determinant for each positive integer N. We proceed in the fol-
lowing way.
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For columns n = 1,2,..., N, we multiply the n** column from Qy by t(n) =
an_i'z((fggii’:f?;ﬁg -—y @nd then subtract from the (n — 1)* column. Call the
new matrix @y and note that det Q' = det Qn. We then work with the rows
of Q. For m = 1,2,..., N, we multiply the m** row from Q’y by t(m) and
then subtract from the (m — 1) row.

The resulting matrix is tridiagonal with the following form:

do So 0 PN 0 0
so di s1 ... 0 0
0 S1 d2 e . 0
Yy = L, ) )
0 0 . Ve dN_1 SN-—-1
0 0 0 ver SN-1 dN
. _(antr1=ani2)(n+2)ansi—(n+l)an)
where s, = — {2 g e (0SSN -1,
dp = = a"“)((";; 2ant1 = 19) | (1, 1 3)52 (0 <0< N-1),
and

_ (an — an+1)(N 4+ 2)an+1 — Nan)
= Z .
In transforming Yy into a triangular matrix with the same determinant, we
find that the new matrix has diagzonal entries d,, which are given by a recursion
Sn—1

dn

formula: 6 = dp,8, = dp, —

(1 < n < N). An induction argument

5n—1

using conditions (1) through (3) shows that &, > an':’;f:;z >0for0<n<

N — 1; since dy departs from the pattern set by the earlier d,,’s, x5 must be
2

handled separately: oy =dy — ;xj > (aN—aN+1)[(N+j?)va1v+1—(N+1)aN] > 0. So

det Qn = H;.V:O dy, > 0, and the proof is complete. O

We note that a specialized version of the procedure of the preceding proof
was used in [7] to show the hyponormality of M for the case arn = 17, for fixed
k> 0. .

Example 2.2. Consider the case where a = {d,} is given by a, = ﬁg
This positive sequence does not satisfy the inequality

An

an(l“an) L pt1 < lta

for all n,
™

the sufficient condition for the hyponormality of M presented in [8]. However,
this example does satisfy the three conditions in the hypothesis of Theorem 2.2,
so we now know that M is hyponormal for this choice of a.

Example 2.3. We note that the sequences given by 0 < a9 < 1 and then

recursively by an+1 = an(1 — ay,) for all n, or by an1 = ﬁf’; for all n, satisfy

conditions (1) through (3) of Theorem 2.2. These two sequences were involved
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in the inequality from [8] that was mentioned in the previous example. The
first sequence was also discussed in Example 2.1. Both sequences result in
associated hyponormal terraced matrices M.

Example 2.4. For the Cesaro matrix C, it is demonstrated in [9] that there
does not exist a hyponormal terraced matrix M satisfying U*MU = C, where
U is the unilateral shift. What if we are willing to relax the requirement on
M and settle for posinormality? If we consider any sequence s = {s,} that
satisfies sp > 1 and s, = % for n > 1, then {ns,} is a nondecreasing sequence
that converges to limit L = 1, so Corollary 2.2 guarantees that M = M(s) is

posinormal. It is straightforward to verify that the equation C = U*MU is
satisfied.

3. Results for the adjoint

The principal result in this section gives sufficient conditions for the posi-
normality of the adjoint of a terraced matrix.

Theorem 3.1. If a = {a,} is a positive decreasing sequence that converges to

0 and {anl+1 - 51:} s a bounded sequence, then M * = M(a)* is posinormal.
Proof. We define T' = [t,,,,] by
‘Z—:‘ if n=0;
A am(E — =) if 0<n<m;
-1 if n=m+1;
0 if n>m+1.

By hypothesis, the diagonal matrix D with diagonal

ag’ar  ap’az ar’as ax’
is bounded, so M D is bounded. Therefore T = M D—U* is a bounded operator.
A routine computation shows that M = TM* and hence M* = MT*. By [7,
Theorem 2.1], M* is posinormal. U

Corollary 3.1. If a = {a,} is a positive decreasing sequence that converges to
0 and {(n + 1)a,} is an increasing sequence that converges to L < 400, then
M* = M(a)* is posinormal.

We note that, in contrast with what we saw earlier for the matrix B, T
cannot be a contraction since ||Teol|> = 3°7°_(22)* > 1. So there will not
be any cases where T can help us prove hyponormality for M*. The next two
theorems further address this issue, more generally, for sequences a = {a,} of

complex numbers.

Theorem 3.2. The adjoint M * of a terraced matriz is hyponormal if and only
if the associated sequence {a,} is essentially trivial (that is, a; = O for all
j>0).
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Proof. The definition of hyponormality applied to M* requires that ((MM* —
M*M)eg,eq) = — E;‘;l laj}? > 0, and this occurs if and only if a; = 0 for all
j>0. O

What we saw in Theorem 3.2 leads us to ask whether M* can be a dominant
operator. Recall that a dominant operator A is one for which Ran(A4 — \) C
Ran(A — A)* for all A in the spectrum of A (see [10]); hyponormal operators
are necessarily dominant. In [7] it was shown that A is dominant if and only if
A — ) is posinormal for all complex .

Theorem 3.3. Suppose the terraced mairiz M is determined by a sequence
{an} with a; # 0 for some j > 0. Then M * cannot be dominant.

Proof. We note that eg € Ker(M —ap)* but eg & Ker(M —ag). Thus (M —ag)* is
" not posinormal (see [7, Corollary 2.3]). It follows that M* is not dominant. O

Thus we see that the adjoint of a terraced matrix is dominant if and only if
the associated sequence {a,} is essentially trivial.

4. Conclusion

We close with some examples and a theorem that will tie together some of
the results from this study. Recall that M is said to be cohyponormal (codom-
inant) if M* is hyponormal (dominant). Similarly, M is coposinormal if M*
is posinormal.

Theorem 4.1. Assume a = {a,} s a sequence satisfying the following conditions:

(1) {an}is a strictly decreasing sequence that converges to 0;
(2) {(n+1)a,} is a strictly increasing sequence that converges to L < +00;

and
(3) ﬁ > 3=+ an1+2) for all n.

Then, for this choice of a and for M = M(a),
(a) M is posinormal, coposinormal, dominant, and hyponormal;
(b) M 1is not cohyponormal and not codominant; and
(c) M has norm || M| = 2L and spectrum o(A) = {\: |\ — L| < L}.

Proof. (a) This claim is justified by Corollary 2.2, Corollary 3.1, and Theo-
rem 2.2.

(b) This statement follows from Theorems 3.2 and 3.3.

(c) The assertion about the norm and the spectrum is an immediate conse-
quence of the main results from [6]. This assertion depends only on conditions
(1) and (2). O

Example 4.1. Consider the case where a is given by a, = m for

all n. This example satisfies conditions (1) through (3) of Theorem 4.1 with
L =1. When W is the unilateral weighted shift with weights {(n + 1)a,}, we
note that it is straightforward to compute that (M — W)(M — W)* = I, so
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|M — W = 1. A direct calculation verifies that || M*al = %. We note that
this positive sequence also satisfies an(1 — a,) < an+1 < 7f2— forall n, the
criterion for the hyponormality of M presented in {8].

Example 4.2. Other examples that satisfy conditions (1) and (2) of Theo-

rem 4.1 with L = 1 include ap = In(1 + =25), an = sin(;i7), and a, =
1

arctan(m). This study has not settled the question of hyponormality, or
of dominance, for the posinormal terraced matrices associated with these se-

quences.
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