• Title/Summary/Keyword: Low gate leakage current

Search Result 113, Processing Time 0.025 seconds

Introduction to Industrial Applications of Low Power Design Methodologies

  • Kim, Hyung-Ock;Lee, Bong-Hyun;Choi, Jung-Yon;Won, Hyo-Sig;Choi, Kyu-Myung;Kim, Hyun-Woo;Lee, Seung-Chul;Hwang, Seung-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.4
    • /
    • pp.240-248
    • /
    • 2009
  • Moore's law has driven silicon technology scale down aggressively, and it results in significant increase of leakage current on nano-meter scale CMOS. Especially, in mobile devices, leakage current has been one of designers' main concerns, and thus many studies have introduced low power methodologies. However, there are few studies to minimize implementation cost in the mixed use of the methodologies to the best of our knowledge. In this paper, we introduce industrial applications of low power design methodologies for the decrease of leakage current. We focus on the design cost reduction of power gating and reverse body bias when used together. Also, we present voltage scale as an alternative to reverse body bias. To sustain gate leakage current, we discuss the adoption of high-$\kappa$ metal gate, which cuts gate leakage current by a factor of 10 in 32 nm CMOS technology. A 45 nm mobile SoC is shown as the case study of the mixed use of low power methodologies.

Fabrication of Sputtered Gated Silicon Field Emitter Arrays with Low Gate Leakage Currents by Using Si Dry Etch

  • Cho, Eou Sik;Kwon, Sang Jik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.28-31
    • /
    • 2013
  • A volcano shaped gated Si-FEA (silicon field emitter array) was simply fabricated using sputtering as a gate electrode deposition and lift-off for the removal of the oxide mask, respectively. Due to the limited step coverage of well-controlled sputtering and the high aspect ratio in Si dry etch caused by high RF power, it was possible to obtain Si FEAs with a stable volcano shaped gate structure and to realize the restriction of gate leakage current in field emission characteristics. For 100 tip arrays and 625 tip arrays, gate leakage currents were restricted to less than 1% of the anode current in spite of the volcano-shaped gate structure. It was also possible to keep the emitters stable without any failure between the Si cathode and gate electrode in field emission for a long time.

Design of Gate-Ground-NMOS-Based ESD Protection Circuits with Low Trigger Voltage, Low Leakage Current, and Fast Turn-On

  • Koo, Yong-Seo;Kim, Kwang-Soo;Park, Shi-Hong;Kim, Kwi-Dong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.725-731
    • /
    • 2009
  • In this paper, electrostatic discharge (ESD) protection circuits with an advanced substrate-triggered NMOS and a gate-substrate-triggered NMOS are proposed to provide low trigger voltage, low leakage current, and fast turn-on speed. The proposed ESD protection devices are designed using 0.13 ${\mu}m$ CMOS technology. The experimental results show that the proposed substrate-triggered NMOS using a bipolar transistor has a low trigger voltage of 5.98 V and a fast turn-on time of 37 ns. The proposed gate-substrate-triggered NMOS has a lower trigger voltage of 5.35 V and low leakage current of 80 pA.

Degradation of Gate Induced Drain Leakage(GIDL) Current of p-MOSFET along to Analysis Condition (분석 조건에 따른 p-MOSFET의 게이트에 유기된 드레인 누설전류의 열화)

  • 배지철;이용재
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.26-32
    • /
    • 1997
  • The gate induced drain leakage(GIDL) current under the stress of worse case in -MOSFET's with ultrathin gate oxides has been measured and characterized. The GIDL current was shown that P-MOSFET's of the thicker gate oxide is smaller than that of the thinner gate oxide. It was the results that the this cur-rent is decreased with the increamental stress time at the same devices.It is analyzed that the formation components of GIDL current are both energy band to band tunneling at high gate-drain voltage and energy band to defect tunneling at low drain-gate voltage. The degradations of GIDL current was analyzed the mechanism of major role in the hot carriers trapping in gate oxide by on-state stress.

  • PDF

A Dual Gate AlGaN/GaN High Electron Mobility Transistor with High Breakdown Voltages (높은 항복 전압 특성을 가지는 이중 게이트 AlGaN/GaN 고 전자 이동도 트랜지스터)

  • Ha Min-Woo;Lee Seung-Chul;Her Jin-Cherl;Seo Kwang-Seok;Han Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • We have proposed and fabricated a dual gate AlGaN/GaN high electron mobility transistor (HEMT), which exhibits the low leakage current and the high breakdown voltage for the high voltage switching applications. The additional gate between the main gate and the drain is specially designed in order to decrease the electric field concentration at the drain-side of the main gate. The leakage current of the proposed HEMT is decreased considerably and the breakdown voltage increases without sacrificing any other electric characteristics such as the transconductance and the drain current. The experimental results show that the breakdown voltage and the leakage current of proposed HEMT are 362 V and 75 nA while those of the conventional HEMT are 196 V and 428 nA, respectively.

Minimizing Leakage of Sequential Circuits through Flip-Flop Skewing and Technology Mapping

  • Heo, Se-Wan;Shin, Young-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.215-220
    • /
    • 2007
  • Leakage current of CMOS circuits has become a major factor in VLSI design these days. Although many circuit-level techniques have been developed, most of them require significant amount of designers' effort and are not aligned well with traditional VLSI design process. In this paper, we focus on technology mapping, which is one of the steps of logic synthesis when gates are selected from a particular library to implement a circuit. We take a radical approach to push the limit of technology mapping in its capability of suppressing leakage current: we use a probabilistic leakage (together with delay) as a cost function that drives the mapping; we consider pin reordering as one of options in the mapping; we increase the library size by employing gates with larger gate length; we employ a new flipflop that is specifically designed for low-leakage through selective increase of gate length. When all techniques are applied to several benchmark circuits, leakage saving of 46% on average is achieved with 45-nm predictive model, compared to the conventional technology mapping.

The Characteristics of LLLC in Ultra Thin Silicon Oxides (실리콘 산화막에서 저레벨누설전류 특성)

  • Kang, C.S.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.285-291
    • /
    • 2013
  • In this paper, MOS-Capacitor and MOSFET devices with a Low Level Leakage Current of oxide thickness, channel width and length respectively were to investigate the reliability characterizations mechanism of ultra thin gate oxide films. These stress induced leakage current means leakage current caused by stress voltage. The low level leakage current in stress and transient current of thin silicon oxide films during and after low voltage has been studied from strss bias condition respectively. The stress channel currents through an oxide measured during application of constant gate voltage and the transient channel currents through the oxide measured after application of constant gate voltage. The study have been the determination of the physical processes taking place in the oxides during the low level leakage current in stress and transient current by stress bias and the use of the knowledge of the physical processes for driving operation reliability.

Properties of Poly-Si TFT's using Oxide-Nitride-Oxide Films as Gate Insulators (Oxide-Nitride-Oxide막을 게이트 절연막으로 사용하여 제조한 다결정실리콘 박막트랜지스티의 특성)

  • 이인찬;마대영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1065-1070
    • /
    • 2003
  • HTO(High Temperature Oxide) films are mainly used as a gate insulator for polysilicon thin film transistors(Poly-Si TFT's). The HTO films, however, show the demerits of a high leakage current and a low electric breakdown voltage comparing with conventional thermal oxides even though they have a better surface in roughness than the thermal oxides. In this paper, we propose an ONO(Oxide-Nitride-Oxide) multilayer as the gate insulator for poly-Si TFT's. The leakage current and electric breakdown voltage of the ONO and HTO were measured. The drain current variation of poly-Si TFT's with a variety of gate insulators was observed. The thickness optimization in ONO films was carried out by studying I$\_$on/I$\_$off/ ratio of the poly-Si TFT's as a function of the thickness of ONO film adopted as gate insulator.

A study on Current-Voltage Relation for Double Gate MOSFET (DGMOSFET의 전류-전압 특성에 관한 연구)

  • Jung, Hak-Kee;Ko, Suk-Woong;Na, Young-Il;Jung, Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.881-883
    • /
    • 2005
  • In case is below length 100nm of gate, various kinds problem can be happened with by threshold voltage change of device, occurrence of leakage current by tunneling because thickness of oxide by 1.5nm low scaling is done and doping concentration is increased. SiO$_2$ dielectric substance can not be used for gate insulator because is expected that tunneling current become 1A/cm$^2$ in 1.5nm thickness low. In this paper, devised double gate MOSFET(DGMOSFET) to decrease effect of leakage current by this tunneling. Therefore, could decrease effect of these leakage current in thickness 1nm low of SiO$_2$ dielectric substance. But, very big gate insulator of permittivity should be developed for develop device of nano scale.

  • PDF

Simulation of nonoverlapped source/drain-to-gate Nano-CMOS for low leakage current (낮은 누설전류를 위한 소스/드레인-게이트 비중첩 Nano-CMOS구조 전산모사)

  • Song, Seung-Hyun;Lee, Kang-Sung;Jeong, Yoon-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.579-580
    • /
    • 2006
  • Simple nonoverlapped source/drain-to-gate MOSFETs to suppress GIDL (gate-induced drain leakage) is simulated with SILVACO simulation tool. Changing spacer thickness for adjusting length of Drain to Gate nonoverlapped region, this simulation observes on/off characteristic of nonoverlapped source/drain-to-gate MOSFETs. Off current is dramatically decreased with S/D to gate nonoverlapped length increasing. The result shows that maximum on/off current ratio is achieved by adjusting nonoverlapped length.

  • PDF