• Title/Summary/Keyword: Logic circuits

Search Result 530, Processing Time 0.022 seconds

Design Optimization of CML-Based High-Speed Digital Circuits (전류모드 논리 회로 기반의 고속 디지털 회로 디자인 최적화)

  • Jang, Ikchan;Kim, Jintae;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.57-65
    • /
    • 2014
  • This paper presents a framework that is based on a reconfigurable macro-model of current-mode logic (CML) high-speed digital circuits enabling equation-based design optimization. The proposed macro-model is compatible with geometric programming, thereby enabling constraint-driven top-level power optimization. The proposed optimization framework is applied to a design of CML based serial-link transmitter with user-defined design specifications as an example of high speed digital circuits using 45nm and 90nm CMOS technology. The proposed optimization framework can derive a design with optimal power efficiency for given transistor technology nodes.

Glitch Reduction Through Path Balancing for Low-Power CMOS Digital Circuits (저전력 CMOS 디지털 회로 설계에서 경로 균등화에 의한 글리치 감소기법)

  • Yang, Jae-Seok;Kim, Seong-Jae;Kim, Ju-Ho;Hwang, Seon-Yeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.10
    • /
    • pp.1275-1283
    • /
    • 1999
  • 본 논문은 CMOS 디지털 회로에서의 전력 소모의 주원인인 신호의 천이중에서 회로의 동작에 직접적인 영향을 미치지 않는 불필요한 신호의 천이인 글리치를 줄이기 위한 효율적인 알고리즘을 제시한다. 제안된 알고리즘은 회로의 지연 증가 없이 게이트 사이징과 버퍼 삽입에 의해 경로 균등(path balancing)을 이룸으로써 글리치를 감소시킨다. 경로 균등화를 위하여 먼저 게이트 사이징을 통해 글리치의 감소와 동시에, 게이트 크기의 최적화를 통해 회로 전체의 캐패시턴스까지 줄일 수 있으며, 게이트 사이징 만으로 경로 균등화가 이루어지지 않을 경우 버퍼 삽입으로 경로 균등화를 이루게 된다. 버퍼 자체에 의한 전력 소모 증가보다 글리치 감소에 의한 전력 감소가 큰 버퍼를 선택하여 삽입한다. 이때 버퍼 삽입에 의한 전력 감소는 다른 버퍼의 삽입 상태에 따라 크게 달라질 수 있어 ILP (Integer Linear Program)를 이용하여 적은 버퍼 삽입으로 전력 감소를 최대화 할 수 있는 저전력 설계 시스템을 구현하였다. 제안된 알고리즘은 LGSynth91 벤치마크 회로에 대한 테스트 결과 회로의 지연 증가 없이 평균적으로 30.4%의 전력 감소를 얻을 수 있었다.Abstract This paper presents an efficient algorithm for reducing glitches caused by spurious transitions in CMOS logic circuits. The proposed algorithm reduces glitches by achieving path balancing through gate sizing and buffer insertion. The gate sizing technique reduces not only glitches but also effective capacitance in the circuit. In the proposed algorithm, the buffers are inserted between the gates where power reduction achieved by glitch reduction is larger than the additional power consumed by the inserted buffers. To determine the location of buffer insertion, ILP (Integer Linear Program) has been employed in the proposed system. The proposed algorithm has been tested on LGSynth91 benchmark circuits. Experimental results show an average of 30.4% power reduction.

Development of CPLD technology mapping control algorithm for Sequential Circuit under Time Constraint (시간제약 조건하에서 순차 회로를 위한 CPLD 기술 매핑 제어 알고리즘 개발)

  • Youn, Chung-Mo;Kim, Jae-Jin
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.71-81
    • /
    • 1999
  • We propose a new CPLD(Complexity Programmable Logic Device) technology mapping algorithm improving run-time under time constraint. In our technology mapping algorithm, a given logic equation is constructed as the DAG(Directed Acyclic Graph) type, then the DAG is reconstructed by replicating the node that outdegree is more than or equal to 2. As a result, it makes delay time and the number of CLBs, run-time to be minimized. Also, after the number of multi-level is defined and cost of each nodes is calculated, the graph is partitioned in order to fit to k that is the number of OR term within CLB. The partitioned nodes are merged through collapsing and bin packing is performed in order to fit to the number of OR term within CLB(Configurable Logic Block). In the results of experiments to MCNC circuits for logic synthesis benchmark, we can shows that proposed technology mapping algorithm reduces run-time and the number of CLBs much more than the TEMPLA.

  • PDF

Three Phase Dynamic Current Mode Logic against Power Analysis Attack (전력 분석 공격에 안전한 3상 동적 전류 모드 로직)

  • Kim, Hyun-Min;Kim, Hee-Seok;Hong, Seok-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.59-69
    • /
    • 2011
  • Since power analysis attack which uses a characteristic that power consumed by crypto device depends on processed data has been proposed, many logics that can block these correlation originally have been developed. DRP logic has been adopted by most of logics maintains power consumption balanced and reduces correlation between processed data and power consumption. However, semi-custom design is necessary because recently design circuits become more complex than before. This design method causes unbalanced design pattern that makes DRP logic consumes unbalanced power consumption which is vulnerable to power analysis attack. In this paper, we have developed new logic style which adds another discharge phase to discharge two output nodes at the same time based on DyCML to remove this unbalanced power consumption. Also, we simulated 1bit fulladder to compare proposed logic with other logics to prove improved performance. As a result, proposed logic is improved NED and NSD to 60% and power consumption reduces about 55% than any other logics.

On Designing Domino CMOS Circuits for High Testability (고 Testability를 위한 Domino CMOS회로의 설계)

  • 이재민;강성모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.401-417
    • /
    • 1994
  • In this paper, a new testable design technique for domino CMOS circuits is proposed to detect stuck-at(s-at), stuck-open(s-op) and stuck-on(s-on) faults in the circuits by observing logic test reponses. The proposed technique adds one pMOS transistor per domino CMOS gate for s-op and s-on faults testing of nMOS transistors and one nMOS transistors and one nMOS transistor per domino gate or multilevel circuit to detect s-on faults in pMOS transistors of inverters in the circuit. The extra transistors enable the proposed testable circuit to operate like a pseudo static nMOS circuit while testing nMOS transistors in domino CMOS circuits. Therefore, the two=phase operation of a precharge phase and a evaluation phase is not needed to keep the domino CMOS circuit from malfunctionong due to circuit delays in the test mode, which reduces the testing time and the complexity of test generation. Most faults of th transistors in the proposed testable domino CMOS circuit can be detected by single test patterns. The use of single test patterns makes the testing of the proposed testable domino CMOS circuit free from path delays, timing skews, chage sharing and glitches. In the proposed design, the testing of the faults which, require test sequences also becomes free from test invalidation. The conventional automatic test pattern generators(ATPG) can be used for generating test patterns to detect faults in the circuits.

  • PDF

Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology

  • Cho, Seong-Jae;Sun, Min-Chul;Kim, Ga-Ram;Kamins, Theodore I.;Park, Byung-Gook;Harris, James S. Jr.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.182-189
    • /
    • 2011
  • In this work, a tunneling field-effect transistor (TFET) based on heterojunctions of compound and Group IV semiconductors is introduced and simulated. TFETs based on either silicon or compound semiconductors have been intensively researched due to their merits of robustness against short channel effects (SCEs) and excellent subthreshold swing (SS) characteristics. However, silicon TFETs have the drawback of low on-current and compound ones are difficult to integrate with silicon CMOS circuits. In order to combine the high tunneling efficiency of narrow bandgap material TFETs and the high mobility of III-V TFETs, a Type-I heterojunction tunneling field-effect transistor (I-HTFET) adopting $Ge-Al_xGa_{1-x}As-Ge$ system has been optimized by simulation in terms of aluminum (Al) composition. To maximize device performance, we considered a nanowire structure, and it was shown that high performance (HP) logic technology can be achieved by the proposed device. The optimum Al composition turned out to be around 20% (x=0.2).

LOS/LOC Scan Test Techniques for Detection of Delay Faults (지연고장 검출을 위한 LOS/LOC 스캔 테스트 기술)

  • Hur, Yongmin;Choe, Youngcheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The New efficient Mux-based scan latch cell design and scan test of LOS/LOC modes are proposed for detection of delay faults in digital logic circuits. The proposed scan cell design can support LOS(Launch-off-Shift) and LOC(Launch-off-Capture) tests with high fault coverage and low scan power and it can alleviate the problem of the slow selector enable signal and hold signal by supporting the logic capable of switching at the operational clock speeds. Also, it efficiently controls the power dissipation of the scan cell design during scan testing. Functional operation and timing simulation waveform for proposed scan hold cell design shows improvement in at-speed test timing in both test modes.

Design of Low Power and High Speed NCL Gates (저전력 고속 NCL 비동기 게이트 설계)

  • Kim, Kyung Ki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.112-118
    • /
    • 2015
  • Conventional synchronous circuits cannot keep the circuit performance, and cannot even guarantee correct operations under the influence of PVT variations and aging effects in the nanometer regime. Therefore, in this paper, a DI (delay insensitive) design based NCL (Null Convention Logic) design methodology with a very simple design structure has been used to design digital systems, which is one of well-known asynchronous design methods robust to various variations and does not require any timing analysis. Because circuit-level structures of conventional NCL gates have weakness of low speed, high area overhead or high wire complexity, this paper proposes a new lNCL gates designed at the transistor level for high-speed, low area overhead, and low wire complexity. The proposed NCL gate libraries have been compared to the conventional NCL gates in terms of circuit delay, area and power consumption using a asynchronous multiplier implemented in dongbu 0.11um CMOS technology.

A New Design of High-Speed 1-Bit Full Adder Cell Using 0.18${\mu}m$ CMOS Process (0.18${\mu}m$ CMOS 공정을 이용한 새로운 고속 1-비트 전가산기 회로설계)

  • Kim, Young-Woon;Seo, Hea-Jun;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • With the recent development of portable system such as mobile communication and multimedia. Full adders are important components in applications such as digital signal processors and microprocessors. Thus It is important to improve the power dissipation and operating speed for designing a full adder. We propose a new adder with modified version of conventional Ratioed logic and Pass Transistor logic. The proposed adder has the advantages over the conventional CMOS, TGA, 14T logic. The delay time is improved by 13% comparing to the average value and PDP(Power Delay Product) is improved by 9% comparing to the average value. Layouts have been carried out using a 0.18um CMOS design rule for evaluation purposes. The physical design has been evaluated using HSPICE.

  • PDF

An Electronic Ballast Using A Multiplex Modulation Method for The Metal Halide Lamp (다중 변조식 메탈 할라이드 램프용 고주파 전자식 안정기)

  • Oh, Duk-Jin;Kim, Hee-Jun;Oh, Won-Seok;Cho, Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1129-1133
    • /
    • 2002
  • This paper presents an electronic ballast using a novel multiplex modulation method for the metal halide lamp. The proposed modulation method, which has a modulating signal of swept multiplex frequency, can eliminate the acoustic resonance more effectively than the conventional modulation method, which has a modulating signal of constant frequency. For the purpose of future application specific integrated circuits (ASIC), the controller of the proposed ballast has been designed only with erasable programmable logic devices (EPLDs), but without a microprocessor. In this paper, detailed proposed modulation schemes are described and experimental results on the proto-type 150W metal halide lamp ballast with the proposed modulation method are discussed.

  • PDF