• Title/Summary/Keyword: Lithium-ion polymer battery

Search Result 117, Processing Time 0.023 seconds

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Fabrication of Coin Cell Batteries Based on Carbon and Glass Fabrics for Satellite Structures (위성 구조체 적용을 위한 고강도 탄소 섬유와 유리 섬유 기반 전지 제작)

  • Young-Cheol Kim;Sang-Woo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.53-60
    • /
    • 2024
  • We developed a coin cell battery using high-strength carbon fiber and glass fiber, taking a preliminary step toward creating a battery that supports structural loads and stores energy, with potential applications in satellite structures. High-strength fiber-based electrodes and electrolytes were fabricated and applied to coin cells to evaluate their electrochemical performance. Consequently, the discharge capacities under continuous charge/discharge cycles and high discharge rates of 2 C-rate were determined to be 122.9 and 103.5 mAh/g, respectively, indicating that high-strength fibers can replace conventional battery components. Although current performance is lower than that of commercial batteries, this research has demonstrated significant potential as foundational work for multi-functional energy storage devices and is expected to contribute to the development of structural batteries for satellite applications.

The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 (Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성)

  • Yang, Su-Bin;Yoo, Gi-Won;Jang, Byeong-Chan;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2014
  • In this study, a positive-electrode material in a lithium secondary battery $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$ was synthesized as precursor by co-precipitation. Cathode material was synthesized by adding iron. The synthesized cathode material was analyzed by scanning electron microscope and x-ray diffraction. The analysis of x-ray diffraction showed that the a-axis and c-axis is increased by doping iron. And $I_{(003)}/I_{(104)}$ is increased and $I_{(006)}+I_{(102)}/I_{(101)}$ is decreased. Through this result, it was confirmed that the structural stability is improved. And impedance measurements show that the charge transfer resistance ($R_{ct}$) is lowered by doping iron. Consequently, electrochemical properties are improved by doping iron. In particular, the cycle characteristics are improved at a high temperature condition (328 K). Structural stabilities are contributing to the cycle properties.

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang;Li, Meng;Meng, Yan;Li, An
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.755-765
    • /
    • 2018
  • In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

Influence of Heat Treatment on Separators for Lithium Secondary Batteries (리튬 이차전지용 분리막에 대한 열처리의 영향)

  • Lee, Sae-Me;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.93-97
    • /
    • 2012
  • Heat treatment effect of polyethylene (PE) separators was investigated after storage at 80, 100 and $120^{\circ}C$ for 1 h. All the samples showed enhanced tensile strength and modulus after heat treatment, but thermal shrinkage up to 15% was observed in PE films having newly formed dimple structure on the surface of fiber after annealed at 100 and $120^{\circ}C$. Although there was 5% of thermal shrinkage after annealing at $80^{\circ}C$, no such serious changes in PE fiber was observed. Furthermore, the separator was found to have enhanced cell performance with 1.3 and 2.3 times higher tensile strength and modulus after heat treatment at $80^{\circ}C$ for 1 h.

Synthesis and Electrochemical Properties of Solid Polymer Electrolytes Using BF3LiMA as Monomer (BF3LiMA를 단량체로 하는 고체 고분자전해질 합성과 전기화학적 특성)

  • Kim, Kyung-Chan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.208-213
    • /
    • 2011
  • Solid polymer electrolytes using $BF_3LiMA$ as monomer were synthesized by usual one step radical polymerization in THF solvent. The effect of $BF_3LiMA$ concentration on ionic conductivity and electrochemical stability was investigated by AC impedance measurement and linear sweep voltammetry. As a result, the highest ionic conductivity reached $7.71{\times}10^{-6}S\;cm^{-1}$ at $25^{\circ}C$ was obtained in 12.9 wt% of $BF_3LiMA$ content. Further increase or decrease of $BF_3LiMA$ content result to decrease the ionic conductivity due to the brittle matrix properties in former case and the insufficient number of charge carrier in the latter case. Furthermore, since the counter-anion was immobilized in the self-doped solid polymer electrolytes, high electrochemical stability up to 6.0 V was observed even in $60^{\circ}C$.

A Review of Structural Batteries with Carbon Fibers (탄소섬유를 활용한 구조용 배터리 연구 동향)

  • Kwon, Dong-Jun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

Synthesis of Crosslinked Poly(POEM-co-AMPSLi-co-GMA) Electrolytes and Physicochemical Properties (가교결합형 poly(POEM-co-AMPSLi-co-GMA) 전해질의 합성과 물리화학적 특성)

  • Choi, Da-In;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • In this study, crosslinked poly(POEM-co-AMPSLi-co-GMA)s were prepared by epoxy coupling of GMA after radical copolymerization of AMPS, POEM and GMA followed by acid-base titration reaction between sulfonic acid of AMPS and $Li_2CO_3$. It was observed that the crystalline melting temperature of POEM was effected by mol% of components and shifted to lower value by lithiation of AMPS group. The ionic conductivity of crosslinked polymer electrolyte was decreased by addition of GMA but maintained over $1.0{\times}10^{-6}S\;cm^{-1}$ until 16 mol%. Particularly, the self-doped polymer electrolyte with 2 mol% of GMA showed its ionic conductivity as high as $4.08{\times}10^{-6}S\;cm^{-1}$ at room temperature and electrochemical stability up to 6 V. In addition, 0.11 MPa of modulus and 270% of elongation were obtained from the free standing film of crosslinked polymer electrolyte.

Synthesis of Poly(MMA-co-PEGMA) Electrolytes by Grafting-onto Method and Effect of Composition on Ionic Conductivities (Grafting-onto법에 의한 poly(MMA-co-PEGMA) 전해질의 합성과 이온전도도에 대한 조성의 영향)

  • Lee, Ju-Hyung;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.198-203
    • /
    • 2013
  • Copolymer consisted of MMA and tBMA was synthesized by radical polymerization and poly(MMA-co-MA) was prepared by selective hydrolysis of tert-butyl group. The obtained polymer was coupled with epoxy functionalized PEO of various molecular weight to synthesize poly(MMA-co-PEGMA) with different side chain length. The AC-impedance measurement shows $1.88{\times}10^{-6}Scm^{-1}$ of room temperature ionic conductivity from 48mol% of MMA while $5.11{\times}10^{-8}Scm^{-1}$ was observed in 82mol% sample. In addition, there was an effect of PEGMA molecular weight on ionic conductivity possibly due to the steric hindrance in grafting-onto coupling reaction. Finally, the polymer electrolytes shows electrochemical stability up to 6V at room temperature.

The Electrochemical Properties of PAN-PVDF-PEGME Blend Polymer Electrolyte System (PAN-PVDF-PEGME Blend계 고분자전해질의 전기화학적 특성)

  • Ryu, Kwang Sun;Lee, Gye Joong;Liou, Kwang Kyoung;Kang, Seong Gu;Chang, Soon Ho
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • The electrochemical properties of PAN-PVDF-PEGME blend polymer electrolyte system are investigated and the physical properties are also measured with varying the content of PEGME. This PEGME partially reduces the crystallinity of PVDF. The ionic conductivities of the polymer electrolytes are about $10^{-3}S/cm$, which may be applicable to a constituent of lithium secondary battery. From the temperature dependence of ionic conductivity, it is suggested that the ionic conductivity increases with the PEGME content due to the fomation of effective ion-conducting path. The cation transference number reaches its maximum value for the electrolytes (SPE 2) with 10 wt% PEGME and then decreases for further increase of PEGME contnet. The electrochemically stable range of SPE 1 (without PEGME) is about 4.3 V, but SPE 2-4 (PAN-PVDF-PEGME system) is about 4.6 V. When these polymer electrolyte are used as electrolyte in rechargeable battery and the cell performances are tested, the discharge capacity increses with the amount of PEGME. Therefore, PEGME increases the ionic conductivity, extends the electrochemical stable range, and finally improves the discharge capacity of cell adopting the electrolyte system.

  • PDF