DOI QR코드

DOI QR Code

Fabrication of Coin Cell Batteries Based on Carbon and Glass Fabrics for Satellite Structures

위성 구조체 적용을 위한 고강도 탄소 섬유와 유리 섬유 기반 전지 제작

  • Young-Cheol Kim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sang-Woo Kim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 김영철 (한국항공대학교, 항공우주 및 기계공학과) ;
  • 김상우 (한국항공대학교, 항공우주 및 기계공학과 )
  • Received : 2024.06.04
  • Accepted : 2024.08.05
  • Published : 2024.08.31

Abstract

We developed a coin cell battery using high-strength carbon fiber and glass fiber, taking a preliminary step toward creating a battery that supports structural loads and stores energy, with potential applications in satellite structures. High-strength fiber-based electrodes and electrolytes were fabricated and applied to coin cells to evaluate their electrochemical performance. Consequently, the discharge capacities under continuous charge/discharge cycles and high discharge rates of 2 C-rate were determined to be 122.9 and 103.5 mAh/g, respectively, indicating that high-strength fibers can replace conventional battery components. Although current performance is lower than that of commercial batteries, this research has demonstrated significant potential as foundational work for multi-functional energy storage devices and is expected to contribute to the development of structural batteries for satellite applications.

본 연구에서는 향후 위성 구조체 적용을 위해 하중 지지와 에너지 저장을 동시에 수행하는 전지를 개발하기 위한 사전 연구로서 고강도 탄소 섬유와 유리 섬유를 이용한 코인 셀 전지를 제작하였다. 전도성 고분자가 증착된 섬유 기반 전극과 전해질을 제작하고, 코인 셀에 적용시켜 전기화학적 성능을 평가하였다. 그 결과, 연속 충·방전과 고방전율(2 C-rate)에 따른 방전 용량은 각각의 122.9, 103.5 mAh/g이 도출되어 고강도 섬유가 기존의 전지 요소를 대체할 수 있음을 확인하였다. 이는 상용 전지 대비 낮은 수준이지만 다기능성 에너지 저장장치의 구현을 위한 기초 연구로서 유의미한 결과를 보여주었으며, 향후 인공위성용 구조전지 개발에 활용될 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구사업임 (2022R1A6A1A03056784, 2022R1F1A1069025).

References

  1. S. K. Lee and S. W. Ra, "Development of energy balance analysis program for LEO satellite design," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 35, no. 9, pp. 850-857, Sep. 2007.  https://doi.org/10.5139/JKSAS.2007.35.9.850
  2. S. J. Hwang, S. G. Kim and Y. G. Lee, "Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV)," Journal of Aerospace System Engineering, vol. 10, no. 1, pp. 59-65, Mar. 2016.  https://doi.org/10.20910/JASE.2016.10.1.59
  3. J. H. Yang, H. S. Park, S. U. Park, J. B. Jang and S. G. Lee, "GEO Satellite Magnetic Momentum Assessment," The Bulletin of The Korean Astronomical Society, vol. 37 no. 2 pp. 182-1, Oct. 2012. 
  4. S. Song, S. Y. Lee, H. R. Kim and Y. K. Chang, "Development and Verification of Modular 3U Cubesat Standard Platform," Journal of Aerospace System Engineering, vol. 11, no. 5, pp. 65-75, Oct. 2017.  https://doi.org/10.20910/JASE.2017.11.5.65
  5. D. Liu, H. Wang, Y. Peng, W. Xie and H. Liao, "Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction," Energies, vol. 6, no. 8, pp. 3654-3668, Jan. 2013.  https://doi.org/10.3390/en6083654
  6. J. D. Choi and B. K. Park, "A Study on the Application of a Fully Electric Propulsion System for Geostationary Missions," Journal of Aerospace System Engineering, vol. 16, no. 5, pp. 26-34, Aug. 2022.  https://doi.org/10.20910/JASE.2022.16.5.26
  7. Jaehyun Jin1, and H. Z Lee, "Modeling and Analysis of Interactions Between A Satellite and Variable-Speed Control Moment Gyros," Journal of Aerospace System Engineering, vol. 12, no. 1, pp. 17-26, Dec. 2018.  https://doi.org/10.20910/JASE.2018.12.1.17
  8. X. Wang, Y. Sone, H. Naito, C. Yamada, G. Segami and K. Kibe, "Cycle-life testing of large-capacity lithium-ion cells in simulated satellite operation," Journal of power sources, vol. 161, no. 1, pp. 594-600, Oct. 2006.  https://doi.org/10.1016/j.jpowsour.2006.04.131
  9. S. Zhao, Z. Guo, K. Yan, S. Wan, F. He, B. Sun and G. Wang, "Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials," Energy Storage Materials, vol. 34, pp. 716-734, Nov. 2021.  https://doi.org/10.1016/j.ensm.2020.11.008
  10. J. P. Thomas and M. A. Qidwai, "The design and application of multifunctional structure-battery materials systems," The journal of the Minerals, vol. 57, no. 3, pp. 18-24, Mac. 2005.  https://doi.org/10.1007/s11837-005-0228-5
  11. L. E. Asp, K. Bouton, D. Carlstedt, S. Duan, R. Harnden, W. Johannisson, M. Johansen, K. G. Johansson, G. Lindbergh, F. Liu, K. Peuvot, L. M. Schneider, J. Xu, D. Zenkert, "A structural battery and its multifunctional performance," Advanced Energy and Sustainability Research, vol. 2, no. 3, pp. 2000093, Jan. 2021. 
  12. W. Johannisson, D. Zenkert and G. Lindbergh, "Model of a structural battery and its potential for system level mass savings," Multifunctional Materials, vo. 2, no. 3, pp.035002, Sep. 2019. 
  13. J. P. Thomas and M. A. Qidwai, "Mechanical design and performance of composite multifunctional materials," Acta materialia, vol. 52, no. 8, pp. 2155-2164, May 2004.  https://doi.org/10.1016/j.actamat.2004.01.007
  14. P. Ladpli, R. Nardari, F. Kopsaftopoulos and F. K. Chang, "Multifunctional energy storage composite structures with embedded lithium-ion batteries," Journal of Power Sources, vol. 414, pp. 517-529. Feb. 2019.  https://doi.org/10.1016/j.jpowsour.2018.12.051
  15. J. Pyo, H. W. Park, M. S. Jang, J. S. Choi, S. K. S. Kumar, and C. G. Kim, "Tubular laminated composite structural battery," Composites Science and Technology, vol. 208, no. 26, pp. 108646, May 2021. 
  16. L. E. Asp and E. S. Greenhalgh, "Structural power composites," Composites science and technology, vol. 101, no. 12, pp. 41-61, Sep. 2014.  https://doi.org/10.1016/j.compscitech.2014.06.020
  17. K. Moyer, C. Meng, B. Marshall, O. Assal, J. Eaves, D. Perez, R. Karkkainen, L. Roberson, C. L. Pint, "Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats," Energy Storage Materials, vol. 24, pp. 676-681, Jan. 2020.  https://doi.org/10.1016/j.ensm.2019.08.003
  18. T. Jin, G. Singer, K. Liang and Y. Yang, "Structural batteries: Advances, challenges and perspectives," Materials Today, vol. 62, pp. 151-167, Feb. 
  19. Y. Yu, B. Zhang, M. Feng, G. Qi, F. Tian, Q. Feng and S. Wang, "Multifunctional structural lithium-ion batteries based on carbon fiber reinforced plastic composites," Composites Science and Technology, vol. 147, pp. 62-70, Apr. 2017.  https://doi.org/10.1016/j.compscitech.2017.04.031
  20. G. Qi, Q. Cui, B. Zhang and S. Du, "A carbon fiber lamina electrode based on macroporous epoxy with vertical ion channels for structural battery composites," Composite Structures, vol. 304, no. 15, pp. 116425, Jan. 2023.
  21. J. Li, K. Zhu, Z. Yao, G. Qian, J. Zhang, K. Yan and J. Wang, "A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries," Ionics, vo. 26, pp. 1101-1108, Nov. 2019.  https://doi.org/10.1007/s11581-019-03320-x
  22. L. Zhu, P. Zhu, Q. Fang, M. Jing, X. She and L. Yang, "A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery," Electrochimica Acta, vol. 292, no.1, pp. 718-726, Dec. 2018.  https://doi.org/10.1016/j.electacta.2018.10.005
  23. M. H. Woo, J. M. Kim, J. H. Cha, H. Y. Jung and D. R. Chang, "A PEO/LLZO solid composite electrolyte for all-solid-state lithium batteries," Journal of Advanced Engineering and Technology, vol. 12, no. 1, Jan. 2019.  https://doi.org/10.35272/JAET.2019.12.1.7
  24. J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang and X. He, "PEO based polymer-ceramic hybrid solid electrolytes: a review," Nano Convergence, vol. 8, no. 2, pp. 1-12, Jan. 2021.  https://doi.org/10.1186/s40580-020-00251-6