DOI QR코드

DOI QR Code

Structural Design and Crashworthiness Analysis of Fuselage Frame for Ultralight Aircraft

초경량 항공기 프레임 동체의 구조 설계 및 내충격 해석

  • HeeSung Lee (University of Ulsan, Dept. Aerospace Engineering) ;
  • Juho Lee (University of Ulsan, Dept. Aerospace Engineering)
  • 이희성 (울산대학교 기계공학부 항공우주공학전공) ;
  • 이주호 (울산대학교 기계공학부 항공우주공학전공)
  • Received : 2024.06.09
  • Accepted : 2024.08.05
  • Published : 2024.08.31

Abstract

With increasing interest in aviation leisure sports, the demand for ultralight aircraft has increased, highlighting the necessity for robust structural design of the aircraft. In response, this study conducted static structural analysis and free-fall analysis of fuselage frame of ultralight aircraft. Robust design and crashworthiness under operational load conditions and vertical impact scenarios were evaluated by assessing maximum stress and safety factors. Analyses were performed using finite element method-based software ANSYS Workbench. Results including stress distribution and strain were analyzed to verify the safety of the designed fuselage frame. Additionally, this study predicted excessive deformation and failure locations of the fuselage frame during vertical drop impacts.

최근 항공레저스포츠 분야에 대한 관심이 증가하면서 초경량 항공기의 수요가 증가하고, 이에 대응하여 항공기의 강건한 구조설계의 필요성이 대두되었다. 이를 위해 본 연구에서는 초경량 항공기 프레임 동체의 정적 구조해석과 자유낙하 해석을 진행하였다. 항공기 운용 과정에서 작용하는 하중 조건 및 수직 방향 충돌 조건에 대한 강건 설계와 내추락성을 최대 응력과 안전율을 통해 평가하였다. 이를 위해 유한요소법에 기반한 소프트웨어인 ANSYS Workbench를 사용하였으며, 해석 결과인 응력분포와 변형률을 분석하여 설계한 프레임 동체의 안전성을 점검하였다. 또한, 수직 방향 낙하 충돌 시 발생하는 프레임 동체의 과도한 변형 및 파손 위치를 예측하였다.

Keywords

Acknowledgement

본 과제(결과물)는 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-003)

References

  1. P. S. Min, "Policy for the Development of Next-Generation Recreational Light Aircraft," Journal of Aviation Development of Korea, Vol.1, pp. 27-43, 2010.
  2. K. S. Lee and E. S. Seol, "Strategies for Building Infrastructure to Expand the Base of Aviation Leisure Sports," Proceedings of the Korean Distribution Association Conference, pp. 197-213, 2010.
  3. Aviation Safety Act, Article 2, Item 3
  4. S. R. Yuvraj and P. Subramanyam, "Design and analysis of Wing of an ultra-light Aircraft." International journal of innovative research in science, engineering and technology, Vol.4, Issue 8, pp. 7456-7468, August 2015.
  5. W. S. Uhm and J. M. Yoon, "Static Test and Analysis of Wing Support Structure for External Stores," Journal of Aerospace System Engineering, Vol.9, No.1, pp. 28-34 2015.
  6. W. Choi and H. Park, "Study on Structural Design and Analysis of Fuel System for Aircraft Auxiliary Fuel Tank," Journal of Aerospace System Engineering, Vol. 13, No. 4, pp. 60-65, Aug. 2019.
  7. J. Littell and J. Putnam, "A Summary of Test Results from a NASA Lift+ Cruise eVTOL Crash Test," Vertical Flight Society's 79th Annual Forum & Technology Display, May 2023
  8. J. Littell and J. Putnam, "Simulation and Analysis of NASA Lift Plus Cruise eVTOL Crash Test," Vertical Flight Society's 79th Annual Forum, May 2023.
  9. I. K. Park, "Trends in the Study of Crashworthy Composite Airframe for VTOL Aircrafts," Current Industrial and Technological Trends in Aerospace, Vol.21, No 2, pp. 53-67, 2023.
  10. Y. H. Jang and J. Kim, "Comparison of the Free-Fall Impact Force Applied to a Multicopter PAV According to External Airbag Folding Method," Journal of Aerospace System Engineering, Vol. 16, No. 1, pp. 28-39, Feb. 2022.
  11. John M. (Tim), C. Y. Ho, Holt, "Structural Alloys Handbook," CINDAS/Purdue University, West Lafayette, IN, 1996.
  12. Federal Aviation Administration. No 14 CFR Part 23 - Airworthiness Standards: Normal Category Airplanes, 2022.
  13. Equation of State and Strength Properties of Selected Materials. Steinberg, D.J. LLNL, Feb 1991.