DOI QR코드

DOI QR Code

A Review of Structural Batteries with Carbon Fibers

탄소섬유를 활용한 구조용 배터리 연구 동향

  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 권동준 (경상국립대학교 나노신소재융합공학부 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 나노신소재융합공학부 그린에너지융합연구소)
  • Received : 2021.04.26
  • Accepted : 2021.06.04
  • Published : 2021.08.10

Abstract

Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

탄소 섬유 강화플라스틱은 가볍지만 우수한 기계적 강도를 가지는 복합재의 한 종류이다. 가벼우면서 우수한 기계적 강도를 가지는 탄소 섬유 강화플라스틱은 산업 전반에 널리 이용되고 있으며, 최근 활발히 연구되고 있는 전기자동차 및 무인기 등의 무게 감소 핵심 대체 부품으로 연구되고 있다. 배터리를 전원으로 사용하는 운송수단 등은 외부 충격에 이차 폭발의 위험이 있기 때문에 배터리를 안전하게 보호할 수 있는 덮개가 필수적인 동시에, 무게를 줄여 주행거리를 늘려야 하는 요구조건을 만족해야 한다. 이러한 요구 조건에 부합하는 재료로 탄소섬유 강화플라스틱이 손꼽히고 있고, 배터리 보호 덮개 및 다양한 대체품으로의 활용이 연구되고 있다. 한편, 우수한 전기적 특성을 가진 탄소 섬유를 배터리 구성품으로 활용하는 연구가 배터리 분야에서 진행 중이고, 이에 더 나아가 탄소 섬유가 배터리를 보호하고 배터리 전극 및 집전체 역할까지 동시에 수행하는 구조용 배터리에 대한 연구가 스웨덴과 미국을 중심으로 활발히 연구 중이다. 본 총설에서는 탄소 섬유의 역할에 따른 구조용 배터리의 분류 및 해당 배터리들에서 발생하는 문제점 등을 포괄하는 최근 연구 동향을 요약하고, 구조용 배터리에 대한 전망을 간략히 논의하고자 한다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697).

References

  1. B. A. Newcomb, Processing, structure, and properties of carbon fibers, Compos. Part A Appl. Sci. Manuf., 91, 262-282 (2016). https://doi.org/10.1016/j.compositesa.2016.10.018
  2. A. A. Jaber, A. A. Obaid, S. G. Advani, and J. W. Gillespie, Prediction of equilibrium spacing between charged polymer particles in contact with a carbon fiber, J. Electrostat., 111, 103577 (2021). https://doi.org/10.1016/j.elstat.2021.103577
  3. D. J. Kwon, N. S. R. Kim, Y. J. Jang, H. H. Choi, K. Kim, G. Kim, J. Kong, S. Y. Nam, Impacts of thermoplastics content on mechanical properties of continuous fiber-reinforced thermoplastic composites, Compos. B Eng., 216, 108859 (2021). https://doi.org/10.1016/j.compositesb.2021.108859
  4. D. J. Kwon, J. H. Kim, K. L. DeVries, and J. M. Park, Optimized epoxy foam interface of CFRP/epoxy foam/CFRP sandwich composites for improving compressive and impact properties, J. Mater. Res. Technol., 11, 62-71 (2021). https://doi.org/10.1016/j.jmrt.2021.01.015
  5. J. H. Kim, P. S. Shin, D. J. Kwon, and J. M. Park, 2D electrical resistance (ER) mapping to detect damage for carbon fiber reinforced polyamide composites under tensile and flexure loading, Compos. Sci. Technol., 201, 108480 (2021). https://doi.org/10.1016/j.compscitech.2020.108480
  6. D. J. Kwon, N. S. R. Kim, Y. J. Jang, S. B. Yang, J. H. Yeum, J. H. Jung, S. Y. Nam, Y. B. Park, and W. Ji, Investigation of impact resistance performance of carbon fiber reinforced polypropylene composites with different lamination to applicate fender parts, Compos. B Eng., 215, 108767 (2021). https://doi.org/10.1016/j.compositesb.2021.108767
  7. J. Yuan, L. D. Gomba, A. D. Callegaro, J. Reimers, and A. Emadi, A review of bidirectional on-board chargers for electric vehicles, IEEE Access, 9, 51501-51518 (2021). https://doi.org/10.1109/ACCESS.2021.3069448
  8. Y. Balai and S. Stegen, Review of energy storage systems for vehicles based on technology, environmental impacts, and costs, Renew. Sustain. Energy Rev., 135, 110185 (2021). https://doi.org/10.1016/j.rser.2020.110185
  9. H. A. Gabbar, A. M. Othman, and M. R. Abdussami, Review of battery management systems (BMS) development and industrial standards, Technol., 9(2), 1-23 (2021).
  10. A. Taniguchi, N. Fujioka, M. Ikoma, and A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs, J. Power Sources, 100, 117-124 (2001). https://doi.org/10.1016/S0378-7753(01)00889-8
  11. X. Zeng, M. Li, D. A. E. Hady, W. Alshitari, A. S. A. Bogami, J. Lu, and K. Amine, Commercialization of lithium battery technologies for electric vehicles, Adv. Energy Mater., 9, 1900161 (2019). https://doi.org/10.1002/aenm.201900161
  12. S. Kawkita, M. Teranishi, Y. Ishizaka, and K. Fushinobu, Comparison between the theoretical, experimental and numerical thermal conductivity of composite thermal interface materials using copper metal foam, 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), July 21-23, Orlando, Florida, USA (2020).
  13. G. Schuh, G. Bergweiler, F. Fiedler, and M. Koltermann, Flexible production concept of a low-cost battery pack housing for electric vehicles, Procedia CIRP, 93, 137-142 (2020). https://doi.org/10.1016/j.procir.2020.04.038
  14. Z. Wang, H. Zhang, and X. Xia, Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure, Int. J. Heat Mass Transf., 109, 958-970 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.057
  15. D. Carlstedt and L. E. Asp, Performance analysis framework for structural battery composites in electric vehicles, Compos. B Eng., 186, 107822 (2020) https://doi.org/10.1016/j.compositesb.2020.107822
  16. D. Carlstedt, W. Johannisson, D. Zenkert, P. Linde, and L. Asp. Conceptual design framework for laminated structural battery composites, In: Proc. 18th Eur. Conf. Compos. Mater., Athens, Greece (2018).
  17. https://www.chalmers.se/en/staff/pages/leifas.aspx.
  18. Tesla model S owner's manual. Version 2018.48.12. Available online: https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf (2019).
  19. BMW. http://www.bmw.com (2019).
  20. N. Ihrner, W. Johannisson, F. Sieland, D. Zenkert, and M. Johansson, Structural lithium ion battery electrolytes: Via reaction induced phase-separation, J. Mater. Chem. A, 5, 25652-25659 (2017). https://doi.org/10.1039/C7TA04684G
  21. Z. Wang, M. Kaferbock, H. Zhao, and H. Chen, First Body-in-white made from composites for a chinese electric car, ATZ Worldwide, 123, 16-21 (2021). https://doi.org/10.1007/s38311-020-0621-2
  22. J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X, Wei, X. Wei, and Y. Huang, Building safe lithium-ion batteries for electric vehicles: A review, Electrochem. Energy Rev., 3, 1-42 (2020). https://doi.org/10.1007/s41918-019-00060-4
  23. Y. Miao, P. Hynan, A.V. Jouanne, and A. Yokochi, Current li-ion battery technologies in electric vehicles and opportunities for advancements, Energies, 12, 1074 (2019). https://doi.org/10.3390/en12061074
  24. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, Xing, Li, N. Tavajohi, and B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energy Chem., 59, 83-99 (2021). https://doi.org/10.1016/j.jechem.2020.10.017
  25. L. Asp, M. Johansson, G. Lindbergh, J. Xu, and D. Zenkert, Structural battery composites: A review, Funct. Compos Struct., 1, 042001 (2019). https://doi.org/10.1088/2631-6331/ab5571
  26. Y. Yang, W. Yuan, X. Zhang, Y. Ke, Z. Qiu, J. Luo, Y. Tang, C. Wang, Y. Yuan, and Y. Huang, A review on structuralized current collectors for high-performance lithiumion battery anodes, Appl. Energy, 276, 115464 (2020). https://doi.org/10.1016/j.apenergy.2020.115464
  27. Y. Wang, X. Wang, M. Xue, Q. Li, Y. Zhang, D. Liu, J. Liu, and W. Rao, All-in-One ENERGISER design: Smart liquid metal-air battery, Chem. Eng. J., 409, 128160 (2021). https://doi.org/10.1016/j.cej.2020.128160
  28. D. A. Shockey, S. C. Ventura, S. C. Narang, J. W. Simons, B. C. Bourne, and B. D. Peterson, Power composites: Structural materials that generate and store electrical energy, Final Report, DTIC (2005).
  29. J. Galos, A. S. Best, and A. P. Mouritz, Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads, Mater. Des., 185, 108228 (2020). https://doi.org/10.1016/j.matdes.2019.108228
  30. J. Chen, Y. Zhou, M. S. Islam, X. Cheng, S. A. Brown, Z. Han, Z. N. Rider, and C. H. Wang, Carbon fiber reinforced Zn-MnO2 structural composite batteries, Compos. Sci. Technol., 209, 108787 (2021). https://doi.org/10.1016/j.compscitech.2021.108787
  31. J. Xu and J. Varna, Matrix and interface cracking in cross-ply composite structural battery under combined electrochemical and mechanical loading, Compos. Sci. Technol., 186, 107891 (2020). https://doi.org/10.1016/j.compscitech.2019.107891
  32. E. D. Wetzl, Reducing weight: Multifunctional composites integrate power, communications, and structure, The AMPTIAC Quarterly, 8, 91-95 (2004).
  33. K. Pattarakunnan, J. Galos, R. Das, and A. P. Mouritz, Impact damage tolerance of energy storage composite structures containing lithium-ion polymer batteries, Compos. Struct., 267, 113845 (2021). https://doi.org/10.1016/j.compstruct.2021.113845
  34. J. Galos, A. A. Khatibi, and A. P. Mouritz, Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries, Compos. Struct., 220, 677-686 (2019). https://doi.org/10.1016/j.compstruct.2019.04.013
  35. K. Moyer, C. Meng, B. Marshall, O. Assal, J. Eaves, D. Perez, R. Karkkainen, L. Roberson, and C. L. Pint, Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats, Energy Storage Mater., 24, 676-681 (2020). https://doi.org/10.1016/j.ensm.2019.08.003
  36. S. Arepalli and P. Moloney, Engineered nanomaterials in aerospace, MRS Bull., 40, 804-811 (2015). https://doi.org/10.1557/mrs.2015.231
  37. J. A. Samareh and E. J. Siochi, Systems analysis of carbon nanotubes: Opportunities and challenges for space applications, Nanotechnol., 28, 372001 (2017). https://doi.org/10.1088/1361-6528/aa7c5a
  38. P. Ladpli, R. Nardari, F. Kopsftopoulos, and F. K. Chang, Multifunctional energy storage composite structures with embedded lithium-ion batteries, J. Power Sources, 414, 517-529 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.051
  39. R. Johnson and I. May, Partial-interaction design of composite beams, Struct. Eng., 53(8), 305-311 (1975).
  40. I. M. Viest, Investigation of stud shear connectors for composite concrete and steel T beams, J. Proc., 52, 875-892 (1956).
  41. Y. Wang, Deflection of steel-concrete composite beams with partial shear interaction, J. Struct. Eng., 124(10), 1159-1165 (1998). https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1159)
  42. E. Jacques, M. He. Kjell, D. Zenkert, G. Lindberghb, and M. Behm, Expansion of carbon fibres induced by lithium intercalation for structural electrode applications, Carbon, 59, 246-254 (2013). https://doi.org/10.1016/j.carbon.2013.03.015
  43. L. E. Asp and E. S. Greenhalgh, Structural power composites, Compos. Sci. Technol., 101, 41-61 (2014). https://doi.org/10.1016/j.compscitech.2014.06.020
  44. J. F. Snyder, R. H. Carter, and E. D. Wetzel, Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries, Chem. Mater., 19, 3793-3801 (2007). https://doi.org/10.1021/cm070213o
  45. T. Carlson, D. Ordeus, M. Wysocki, and L. E. Asp, Structural capacitor materials made from carbon fibre epoxy composites, Compos. Sci. Technol., 70(7), 1135-1140 (2010). https://doi.org/10.1016/j.compscitech.2010.02.028
  46. N. Muralidharan, E. Teblum, A. S. Westover, D. Schauben, A. Itzhak, M. Muallem, G. D. Nessim, and C. L. Pint, Carbon nanotube reinforced structural composite supercapacitor, Scientific. Reports, 8, 17662 (2018). https://doi.org/10.1038/s41598-018-34963-x
  47. W. Johannisson, N. Ihrner, D. Zenkert, M. Johansson, D. Carlstedt, L. E. Asp, and F. Sieland, Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries, Compos. Sci. Technol., 168, 81-87 (2018). https://doi.org/10.1016/j.compscitech.2018.08.044
  48. C. Meng, N. Muralidharan, E. Teblum, K. E. Moyer, G. D. Nessim, and C. L. Pint, Mechanically-robust structural lithium-sulfur battery with high energy density, Nano Lett., 18, 7761-7768 (2018). https://doi.org/10.1021/acs.nanolett.8b03510
  49. E. L. Wong, D. M. Baechle, K. Xu, J. F. Snyder, R. H. Carter, and E. D. Wetzel, Design and processing of structural composite batteries, SAMPE 2007. June 3-7, Baltimore, Maryland, U.S.A. (2007).
  50. W. Huang, P. Wang, X. Liao, Y. Chen, J. Borovila, T. Jin, A. Li, Q. Cheng, Y. Zhang, H. Zhai, A. Chitu, Zhai, A. Chitu, Z. Shan, and Y. Yang, Mechanically-robust structural lithium-sulfur battery with high energy density, Energy Storage Mater., 33, 416-422 (2020). https://doi.org/10.1016/j.ensm.2020.08.018
  51. Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H. M. Cheng, Field emission of single-layer graphene films prepared by electrophoretic deposition, Adv. Mater., 21, 1756-1760 (2009). https://doi.org/10.1002/adma.200802560
  52. M. Diba, A. G. Gallastegui, R. N. Klupp Taylor, F. Pishbin, M. P. Ryan, M. S. P. Shaffer, and A. R. Boccaccini, Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide, Carbon, 67, 656-661 (2014). https://doi.org/10.1016/j.carbon.2013.10.041
  53. Z. Y. Xia, D. Wei, E. Anitowska, V. Bellani, L. Ortolani, V. Morandi, M. Gazzano, A. Zanelli, S. Borini, and V. Palermo, Electrochemically exfoliated graphene oxide/iron oxide composite foams for lithium storage, produced by simultaneous graphene reduction and Fe(OH)3 condensation, Carbon, 84, 254-262 (2015). https://doi.org/10.1016/j.carbon.2014.12.007
  54. Z. Y. Xia, M. Christian, C. Arbizzani, V. Morandi, M. Gazzano, V. Quintano, A. Kovtun, V. Palermo, and A robust, modular approach to produce graphene-MO X multilayer foams as electrodes for li-ion batteries, Nanoscale, 11, 5265-5273 (2019). https://doi.org/10.1039/C8NR09195A
  55. J. S. Sanchez, J. Zu, Z. Xia, J. Sun, L. E. Asp, and V. Palermo, Electrophoretic coating of LiFePO4/graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries, Compos. Sci. Technol., 208, 108768 (2021). https://doi.org/10.1016/j.compscitech.2021.108768
  56. Y. Yu, B. Zhang, M. Feng, G. Qi, F. Tian, Q. Feng, J. Yang, and S. Wang, Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites, Compos. Sci. Technol., 147, 62-70 (2017). https://doi.org/10.1016/j.compscitech.2017.04.031
  57. J. Xu, W. Johannisson, M. Johansen, F. Liu, D. Zenkert, G. Lindbergh, and L. E. Asp, Characterization of the adhesive properties between structural battery electrolytes and carbon fibers, Compos. Sci. Technol., 188, 107962 (2020). https://doi.org/10.1016/j.compscitech.2019.107962
  58. Toray Carbon Fibres America Inc., T800H Data Sheet (2019).
  59. Toray Carbon Fibres America Inc., T800S Data Sheet (2019).
  60. N. Ihrner, W. Johannisson, F. Sieland, D. Zenkert, and M. Johansson, Structural lithium ion battery electrolytes: Via reaction induced phase-separation, J. Mater. Chem. A, 5, 25652-25659 (2017). https://doi.org/10.1039/C7TA04684G
  61. W. Johannisson, N. Ihrner, D. Zenkert, M. Johansson, D. Carlstedt, L. E. Asp, and F. Sieland, Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries, Compos. Sci. Technol., 168, 81-87 (2018). https://doi.org/10.1016/j.compscitech.2018.08.044
  62. L. M. Schneider, N. Ihrner, D. Zenkert, and M. Johansson, Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries, ACS Appl. Energy Mater., 2, 4362-4369 (2019). https://doi.org/10.1021/acsaem.9b00563
  63. L. E. Asp, K. Bouton, D. Carlstedt, S. Duan, R. Harnden, W. Johannisson, M. Johansen, M. K. G. Johansson, G. Lindbergh, F. Liu, K. Peuvot, L. M. Schneider, J. Xu, and D. Zenkert, A structural battery and its multifunctional performance, Adv. Energy Sustain. Res., 2, 2000093 (2021). https://doi.org/10.1002/aesr.202000093
  64. H. W. Park, M. S. Jang, J. S. Choi, J. Pyo, and C. G. Kim, Characteristics of woven carbon fabric current collector electrodes for structural battery, Compos. Struct., 256, 112999 (2021). https://doi.org/10.1016/j.compstruct.2020.112999
  65. H. Cha, J. Kim, Y. Lee, J. Cho, and M. Park, Issues and challenges facing flexible lithiumion batteries for practical application, Small, 14(43), 1-18 (2018).
  66. H. J. Peng, J. Q. Huang, X. B. Cheng, and Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries, Adv. Energy Mater., 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260