DOI QR코드

DOI QR Code

Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers

박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향

  • Ko, Sangwon (Transportation Environmental Research Department, Korea Railroad Research Institute) ;
  • Lee, Jae-Young (Transportation Environmental Research Department, Korea Railroad Research Institute) ;
  • Park, Duckshin (Transportation Environmental Research Department, Korea Railroad Research Institute)
  • 고상원 (한국철도기술연구원 교통환경연구실) ;
  • 이재영 (한국철도기술연구원 교통환경연구실) ;
  • 박덕신 (한국철도기술연구원 교통환경연구실)
  • Received : 2021.05.20
  • Accepted : 2021.06.18
  • Published : 2021.08.10

Abstract

The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic polymers showed the anti-adhesion effect for bioentities, such as proteins and bacteria. This is attributed to the formation of surface barrier from hydration layers, repulsions and osmotic stresses from polymer brushes, and electrostatic interactions between ionic polymers and cell surfaces. The antifouling polymer coating is usually fabricated by the grafting method through the bonding with functional groups on surfaces and the deposition method utilizing biomimetic anchors. This mini-review is a summary of representative antifouling polymers, coating strategies, and antibacterial efficacy. Furthermore, we will discuss consideration on the large area surface coating for application to public facilities and industry.

고체 표면의 박테리아 부착억제를 목적으로 고분자를 이용한 친수성 표면 개질 연구가 주목을 받고 있다. 부착억제기능은 세포독성이 아닌 작용으로 바이오필름 형성의 초기단계 방지를 목적으로 하며 친수성 또는 이온성 고분자가 도입된 고체 표면은 단백질, 박테리아 등 생물 개체의 부착방지에 효과적이다. 이는 표면에서의 친수층 형성으로 인한 표면 장벽 형성, 고분자 사슬에 의한 반발력과 삼투압성 응력 작용, 그리고 이온성 고분자와 세포 표면의 정전기적 상호작용에 기인한다. 부착억제를 위한 고분자의 표면 도입은 주로 표면 기능기와의 결합을 이용한 접합 방식과 자연모방 접착 기능기를 활용한 침적 방식으로 이루어지고 있다. 본 총설에서는 표면 도입 시 부착억제 기능을 보이는 대표적인 고분자의 종류, 코팅방법, 및 항균 특성을 소개하고 향후 공공시설, 산업 등으로의 대면적 응용을 위한 고려사항들을 다루고자 한다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 연구비 지원으로 수행되었습니다(21CTAP-C163614-01).

References

  1. J. A. Lichter, K. J. Van Vliet, and M. F. Rubner, Design of antibacterial surfaces and interfaces: Polyelectrolyte multilayers as a multifunctional platform, Macromolecules, 42, 8573-8586 (2009). https://doi.org/10.1021/ma901356s
  2. W. K. Cho, S. M. Kang, and J. K. Lee, Non-biofouling polymeric thin films on solid substrates, J. Nanosci. Nanotechnol., 14, 1231-1252 (2014). https://doi.org/10.1166/jnn.2014.8891
  3. J. K. Lee, S. M. Kang, S. H. Yang, and W. K. Cho, Micro/nanostructured films and adhesives for biomedical applications, J. Biomed. Nanotechnol., 11, 2081-2110 (2015). https://doi.org/10.1166/jbn.2015.2097
  4. M. Cloutier, D. Mantovani, and F. Rosei, Antifacterial coatings: Challenges, Perspectives, and Opportunities, Trends in Biotechnol., 33, 637-652 (2015). https://doi.org/10.1016/j.tibtech.2015.09.002
  5. J. J. T. M. Swartjes, P. K. Sharma, T. G. van Kooten, H. C. van der Mei, M. Mahmoudi, H. J. Busscher, and E. T. J. Rochford, Current developments in antimicrobial surface coatings for biomedical applications, Curr. Med. Chem., 22, 2116-2129 (2015). https://doi.org/10.2174/0929867321666140916121355
  6. K. G. Neoh, M. Li, E.-T. Kang, E. Chiong, and P. A. Tambyah, Surface modification strategies for combating catheter-related complications: Recent advances and challenges, J. Mater. Chem. B, 5, 2045-2067 (2017). https://doi.org/10.1039/C6TB03280J
  7. I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater., 23, 690-718 (2011). https://doi.org/10.1002/adma.201001215
  8. B. Wang, K. Ren. H. Chang, J. Wang, and J. Ji, Construction of degradable multilayer films for enhanced antibacterial properties, ACS Appl. Mater. Interfaces, 5, 4136-4143 (2013). https://doi.org/10.1021/am4000547
  9. E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir, 17, 6336-6343 (2001). https://doi.org/10.1021/la010552a
  10. H. Jiang, S. Manolache, A. C. Wong, and F. S. Denes, Synthesis of dendrimer-type poly(ehtylene gloycol) structures from plasma-functionalized silicone rubber surfaces, J. Appl. Polym. Sci., 102, 2324-2337 (2006). https://doi.org/10.1002/app.24472
  11. R. S. Kane, P. Deschatelets, and G. M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces, Langmuir, 19, 2388-2391 (2003). https://doi.org/10.1021/la020737x
  12. L. Li, S. Chen, and S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption, J. Biomater. Sci. Polym. Ed., 18, 1415-1427 (2007). https://doi.org/10.1163/156856207782246795
  13. J. Wu, C. Zhao, R. Hu, W. Lin, Q. Wang, J. Zhao, S. M. Bilinovich, T. C. Leeper, L. Li, H. M. Cheung, S. Chen, J. Zheng, Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers, Acta Biomaterialia, 10, 751-760 (2014). https://doi.org/10.1016/j.actbio.2013.09.038
  14. S. Kim, J.-M. Moon, J. S. Choi, W. K. Cho, and S. M. Kang, Mussel-inspired approach to constructing robust multilayered alginate films for antibacterial applications, Adv. Fuct. Mater., 26, 4099-4105 (2016). https://doi.org/10.1002/adfm.201600613
  15. L. Xu, D. Pranantyo, K.-G. Neoh, and E.-T. Kang, Tea stains-inspired antifouling coatings based on tannic acid-functionalized agarose, ACS Sustainable Chem. Eng., 5, 3055-3062 (2017). https://doi.org/10.1021/acssuschemeng.6b02737
  16. D. W. Kim, J.-M. Moon, S. Park, J. S. Choi, and W. K. Cho, Facile and effective antibacterial coatings on various oxide substrates, J. Ind. Eng. Chem., 68, 42-47 (2018). https://doi.org/10.1016/j.jiec.2018.07.027
  17. P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, and L. Gram, Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion, Langmuir, 19, 6912-6921 (2003). https://doi.org/10.1021/la034032m
  18. G. Cheng, Z. Zhang, S. Chen, J. D. Bryers, and S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials, 28, 4192-4199 (2007). https://doi.org/10.1016/j.biomaterials.2007.05.041
  19. Q. Liu, A. Singh, R. Lalani, and L. Liu, Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization, Biomacromolecules, 13, 1086-1092 (2012). https://doi.org/10.1021/bm201814p
  20. K. Fujimoto, H. Tadokoro, Y. Ueda, and Y. Ikada, Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion, Biomaterials, 14, 442-448 (1993). https://doi.org/10.1016/0142-9612(93)90147-T
  21. I. Cringus-Fundeanu, J. Luijten, H. C. van der Mei, H. J. Busscher, and A. J. Schouten, Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion, Langmuir, 23, 5120-5126 (2007). https://doi.org/10.1021/la063531v
  22. C. Zhao, L. Li, Q. Wang, Q. Yu, and J. Zheng, Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces, Langmuir, 27, 4906-4913 (2011). https://doi.org/10.1021/la200061h
  23. W. J. Yang, T. Cai, K.-G. Neoh, E.-T. Kang, G. H. Dickinson, S. L.-M. Teo, and D. Rittschof, Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel, Langmuir, 27, 7065-7076 (2011). https://doi.org/10.1021/la200620s
  24. G. Cheng, G. Li, H. Xue, S. Chen, J. D. Bryers, S. Jiang, Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation, Biomaterials, 30, 5234-5240 (2009). https://doi.org/10.1016/j.biomaterials.2009.05.058
  25. S. H. Ki, S. Lee, D. Kim, S. J. Song, S.-P. Hong, S. Cho, S. M. Kang, J. S. Choi, and W. K. Cho, Antibacterial film formation through iron(III) complexation and oxidation-induced cross-linking of OEG-DOPA, Langmuir, 35, 14465-14472 (2019). https://doi.org/10.1021/acs.langmuir.9b02572
  26. L. Garcia-Fernandez, J. Cui, C. Serrano, Z. Shafiq, R. A. Gropeanu, V. San Miguel, J. I. Ramos, M. Wang, G. K. Auernhammer, S. Ritz, A. A. Golriz, R. Berger, M. Wagner, and A. del Campo, Antibacterial strategies from the sea: Polymer-bound Cl-catechols for prevention for biofilm formation, Adv. Mater., 25, 529-533 (2013). https://doi.org/10.1002/adma.201203362
  27. K. Hirota, K. Murakami, K. Nemoto, Y. Miyake, Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms, FEMS Microbiol. Lett., 248, 37-45 (2005). https://doi.org/10.1016/j.femsle.2005.05.019
  28. A. L. Lewis, Z. L. Cumming, H. H. Goreish, L. C. Kirkwood, L. A. Tolhurst, and P. W. Stratford, Crosslinkable coatings from phosphorylcholine-based polymers, Biomaterials, 22, 99-111 (2001). https://doi.org/10.1016/S0142-9612(00)00083-1
  29. T. Yoshioka, K. Tsuru, S. Hayakawa, and A. Osaka, Preparation of alginic acid layers on stainless-steel substrates for biomedical applications, Biomaterials, 24, 2889-2894 (2003). https://doi.org/10.1016/S0142-9612(03)00127-3
  30. Y. Jeong, L. T. Thuy, S. H. Ki, S. Ko, S. Kim, W. K. Cho, J. S. Choi, and S. M. Kang, Multipurpose antifouling coating of solid surfaces with the marine-derived polymer fucoidan, Macromol. Biosci., 1800137 (2018). https://doi.org/10.1002/mabi.201800137
  31. B. Kaczmarek, Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview, Materials, 13, 3224 (2020). https://doi.org/10.3390/ma13143224
  32. J. H. Park, S. Choi, H. C. Moon, H. Seo, J. Y. Kim, S.-P. Hong, B. S. Lee, E. Kang, J. Lee, D. H. Ryu, and I. S. Choi, Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: Applications to shoe insoles and fruits, Sci. Rep., 7, 6980 (2017). https://doi.org/10.1038/s41598-017-07257-x
  33. B.-O. Jung, Y.-M. Lee, J.-J. Kim, Y.-J. Choi, K.-J. Jung, J.-J. Kim, and S.-J. Chung, The antimicrobial effect of water soluble chitosan, J. Ind. Eng. Chem., 10, 660-665 (1999).
  34. C. H. Kim, Y. S. Choi, and K. S. Choi, Antibacterial activity by chitosan derivatives with quaternary ammonium salt, J. Ind. Eng. Chem., 7, 1020-1026 (1996).
  35. H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics, Int. J. Mol. Sci., 14, 1854-1869 (2013). https://doi.org/10.3390/ijms14011854
  36. M. Kumorek, I. M. Minisy, T. Krunclova, M. Vorsilakova, K. Venclikova, E. M. Chanova, O. Janouskova, and D. Kubies, pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid, Mater. Sci. Eng. C, 109, 110493 (2020). https://doi.org/10.1016/j.msec.2019.110493
  37. Y. F. Cheng, Y. H. Mei, G. Sathishkumar, Z. S. Lu, C. M. Li, F. Wang, Q. Y. Xia, L. Q. Xu, Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application, Colloid Interface Sci. Commun., 35, 100241 (2020). https://doi.org/10.1016/j.colcom.2020.100241
  38. J. Y. Kim, H.-J. Park, and J. Yoon, Antimicrobial activity and mechanism for various nanoparticles, Appl. Chem. Eng., 21, 366-371 (2010).
  39. K. Choi, T. Kim, S. Yun, J. Yoon, and J.-C. Lee, Development of antimicrobial N-halamine containing alkyl chain for paint, Appl. Chem. Eng., 22, 45-47 (2011).