DOI QR코드

DOI QR Code

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries

리튬이차전지용 고체 전해질의 최근 진전과 전망

  • Kim, Jumi (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Oh, Jimin (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Ju Young (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI))
  • 김주미 (한국전자통신연구원 ICT 창의연구소 실감소자원천연구본부) ;
  • 오지민 (한국전자통신연구원 ICT 창의연구소 실감소자원천연구본부) ;
  • 김주영 (한국전자통신연구원 ICT 창의연구소 실감소자원천연구본부) ;
  • 이영기 (한국전자통신연구원 ICT 창의연구소 실감소자원천연구본부) ;
  • 김광만 (한국전자통신연구원 ICT 창의연구소 실감소자원천연구본부)
  • Received : 2019.07.16
  • Accepted : 2019.08.04
  • Published : 2019.08.31

Abstract

Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

현재 상용화되어 있는 리튬이온전지에 사용하고 있는 비수계 유기 전해액은 가연성, 부식성, 고휘발성, 열적 불안정성 등의 단점 때문에 더욱 안전하고 장수명을 보이는 고체 전해질로 대체하는 연구가 진행되고 있으며, 이것은 전기자동차 및 에너지저장 시스템과 같은 중대형 이차전지에도 효율적으로 활용될 수 있다. 다양한 형태의 고체 전해질 중에서 현재 고분자 매트릭스에 활성 무기 충진재가 포함되어 있는 복합 고체 전해질이 고이온전도도와 전극과의 탁월한 계면접촉을 이루는데 가장 유리한 것으로 알려졌다. 본 총설에서는 우선 고체 전해질의 종류와 연혁에 관해 간단히 소개하고, 고분자 및 무기 충진재 (불활성 및 활성)로 구성되는 고체 고분자 전해질 및 무기 고체 전해질의 기본적 물성 및 전기화학적 특성을 개괄한다. 또한 이 소재들의 형상을 기준으로 입자형 (0D), 섬유형 (1D), 평판형 (2D), 입체형 (3D)의 형식으로 구성된 복합고체 전해질과 이에 따른 전고체 전지의 전기화학적 특성을 논의한다. 특히 리튬금속 음전극을 사용하는 전고체 전지에 있어서 양전극-전해질 계면, 음전극-전해질 계면, 입자간 계면의 특성에 관해 소개하고, 마지막으로 현재까지 보고된 관련 총설들을 참조하여 복합 고체 전해질 기술의 현재 요구조건 및 미래 전망을 알아본다.

Keywords

References

  1. E. Quartarone and P. Mustarelli, 'Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives' Chem. Soc. Rev., 40, 2525-2540 (2011). https://doi.org/10.1039/c0cs00081g
  2. A. Varzi, R. Raccichini, S. Passerini, and B. Scrosati, 'Challenges and Prospects of the Role of Solid Electrolytes in the Revitalization of Lithium Metal Batteries' J. Mater. Chem. A, 4, 17251-17259 (2016). https://doi.org/10.1039/C6TA07384K
  3. M. Keller, A. Varzi, and S. Passerini, 'Hybrid Electrolytes for Lithium Metal Batteries' J. Power Sources, 392, 206-225 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.099
  4. H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli, and J. Wang, 'Recent Progress and Perspective on Lithium Metal Anode Protection' Energy Storage Mater., 14, 199-221 (2018). https://doi.org/10.1016/j.ensm.2018.03.001
  5. X.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu, and Q. Zhang, 'Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes' Chem, 5, 74-96 (2019). https://doi.org/10.1016/j.chempr.2018.12.002
  6. M. Dirican, C. Yan, P. Zhu, and X. Zhang, 'Composite Solid Electrolytes for All-Solid-State Lithium Batteries' Mater. Sci. Eng. R, 136, 27-46 (2019). https://doi.org/10.1016/j.mser.2018.10.004
  7. S. Xia, X. Wu, Z. Zhang, Y. Cui, and W. Liu, 'Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries' Chem, 5, 753-785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
  8. M. Shoji, E.J. Cheng, T. Kimura, and K. Kanamura, 'Recent Progress for All Solid State Battery Using Sulfide and Oxide Solid Electrolytes' J. Phys. D: Appl. Phys., 52, 103001 (2018). https://doi.org/10.1088/1361-6463/aaf7e2
  9. A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, 'Liquid-Phase Synthesis of Sulfide Electrolytes for All-Solid-State Lithium Battery' Nature Rev. Chem., 3, 189-198 (2019). https://doi.org/10.1038/s41570-019-0078-2
  10. J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, 'Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanism and Properties Governing Ion Conduction' Chem. Rev., 116, 140-162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
  11. X. Chen and P.M. Vereecken, 'Solid and Solid-like Composite Electrolyte for Lithium Ion Batteries: Engineering the Ion Conductivity at Interfaces' Adv. Mater. Interf., 6, 1800899 (2019). https://doi.org/10.1002/admi.201800899
  12. Y.S. Jung, D.Y. Oh, Y.J. Nam, and K.H. Park, 'Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Batteries Using Sulfide Solid Electrolytes' Israel J. Chem., 50, 472-485 (2015).
  13. L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei, and L. Mai, 'Interfaces in Solid-State Lithium Batteries' Joule, 2, 1991-2015 (2018). https://doi.org/10.1016/j.joule.2018.07.009
  14. Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, and G. Guan, 'Utmost Limits of Various Solid Electrolytes in All-Solid-State Lithium Batteries: A Critical Review' Renewable Sustain. Energy Rev., 109, 367-385 (2019). https://doi.org/10.1016/j.rser.2019.04.035
  15. Y, Tateyama, B. Gao, R. Jalem, and J. Haruyama, 'Theoretical Picture of Positive Electrode-Solid Electrolyte Interface in All-Solid-State Battery from Electrochemistry and Semiconductor Physics Viewpoints' Curr. Op. Electrochem., 17, 149-157 (2019). https://doi.org/10.1016/j.coelec.2019.06.003
  16. L. Liang, X. Sun, J. Zhang, J. Sun, L. Hou, Y. Liu, and C. Yuan, 'Sur-/Interfacial Regulation in All-Solid-State Rechargeable Li-ion Batteries Based on Inorganic Solid-State Electrolytes: Advances and Perspectives' Mater. Horizons, 6, 871-910 (2019). https://doi.org/10.1039/C8MH01593G
  17. Z. Jiang, Q. Han, S. Wang, and H. Wang, 'Reducing the Interfacial Resistance in All-Solid-State Lithium Batteries Based on Oxide Ceramic Electrolytes' ChemElectroChem, 6, 2970-2983 (2019). https://doi.org/10.1002/celc.201801898
  18. M. Du, K. Liao, Q. Lu, and Z. Shao, 'Recent advances in the Interface Engineering of Solid-State Li-ion Batteries with Artificial Buffer Layers: Challenges, Materials, Construction, and Characterization' Energy Environ. Sci., 12, 1780-1804 (2019). https://doi.org/10.1039/C9EE00515C
  19. Q. Wang, L. Jiang, Y. Yu, and J. Sun, 'Progress of Enhancing the Safety of Lithium Ion Battery from the Electrolyte Aspect' Nano Energy, 55, 93-114 (2019). https://doi.org/10.1016/j.nanoen.2018.10.035
  20. G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang, S. Chen, L. Xu, H. Yuan, and Q. Zhang, 'Fast Charging Lithium Batteries: Recent Progress and Future Prospects' Small, 15, 1805389 (2019). https://doi.org/10.1002/smll.201805389
  21. H. Shen, E. Yi, L. Cheng, M. Amores, G. Chen, S.W. Sofie, and M.M. Doeff, 'Solid-State Electrolyte Considerations for Electric Vehicle Batteries' Sustainable Energy Fuels, 3, 1647-1659 (2019). https://doi.org/10.1039/C9SE00119K
  22. M. Zhu, J. Wu, Y. Wang, M. Song, S.H. Siyal, X. Yang, and G. Sui, 'Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries' J. Energy Chem., 37, 126-142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
  23. F. Baskoro, H.Q. Wong, and H.-J. Yen, 'Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-ion Battery' ACS Energy Mater., 2, 3937-3971 (2019). https://doi.org/10.1021/acsaem.9b00295
  24. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, and J.D. Robertson, 'Electrical Properties of Amorphous Lithium Electrolyte Thin Films' Solid State Ionics, 53-56, 647-654 (1992). https://doi.org/10.1016/0167-2738(92)90442-R
  25. N.J. Dudney, J.B. Bates, R.A. Zuhr, C.F. Luck, and J.D. Robertson, 'Sputtering of Lithium Compounds for Preparation of Electrolyte Thin Films' Solid State Ionics, 53-56, 655-661 (1992). https://doi.org/10.1016/0167-2738(92)90443-S
  26. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, 'High Ionic Conductivity in Lithium Lanthanum Titanate' Solid State Commun., 86, 689-693 (1993). https://doi.org/10.1016/0038-1098(93)90841-A
  27. J. Fu, 'Fast $Li^+$ Ion Conducting Glass-Ceramics in the System $Li_2O-Al_2O_3-GeO_2-P_2O_5$' Solid State Ionics, 104, 191-194 (1997). https://doi.org/10.1016/S0167-2738(97)00434-7
  28. J. Fu, 'Superionic Conductivity of Glass-Ceramics in the System $Li_2O-Al_2O_3-TiO_2-P_2O_5$' Solid State Ionics, 96, 195-200 (1997). https://doi.org/10.1016/S0167-2738(97)00018-0
  29. R. Murugan, V. Thangadurai, and W. Weppner, 'Fast Lithium Ion Conduction in Garnet-Yype $Li_7La_3Zr_2O_{12}$' Angew. Chem. Intern. Ed., 46, 7778-7781 (2007). https://doi.org/10.1002/anie.200701144
  30. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, 'A Lithium Superionic Conductor' Nature Mater., 10, 682-686 (2011). https://doi.org/10.1038/nmat3066
  31. Y. Seino, T. Ota, K. Tanaka, A. Hayashi, and M. Tatsumisago, 'A Sulphide Lithium Super-Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries' Energy Environ. Sci., 7, 627-631 (2014). https://doi.org/10.1039/C3EE41655K
  32. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, 'High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors' Nature Energy, 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
  33. D.C. Lin, W. Liu, Y.Y. Liu, H.R. Lee, P.C. Hsu, K. Liu, and Y. Cui, 'High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed $SiO_2$ Nanospheres in Poly(ethylene oxide)' Nano Lett., 16, 459-465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
  34. X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.W. Nan, and Y. Shen, 'Synergistic Coupling between $Li_{6.25}La_3Zr_{1.75}Ta_{0.25}O_{12}$ and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes' J. Am. Chem. Soc., 139, 13779-13785 (2017) https://doi.org/10.1021/jacs.7b06364
  35. W. Liu, N. Liu, J. sun, P.C. Hsu, Y. Li, H.W. Lee, and Y. Cui, 'Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers' Nano Lett., 15, 2740-2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
  36. T. Tang, J. Zhang, Q. Cheng, Y.-Y. Han, and C.K. Chan, 'Composite Polymer Electrolytes with $Li_7La_3Zr_2O_{12}$ Garnet-Type Nanowire as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology' ACS Appl. Mater. Interf., 9, 21773-21780 (2017). https://doi.org/10.1021/acsami.7b03806
  37. Y. Zhao, Y. Ding, Y. Li, L. Peng, H.R. Byon, J.B. Goodenough, and G. Yu, 'A Chemistry and Material Perspective on Lithium Redox Flow Batteries towards High-Density Electrical Energy Storage' Chem. Soc. Rev., 44, 7968-7996 (2015). https://doi.org/10.1039/C5CS00289C
  38. J. Zheng, M. Tang, and Y.-Y. Hu, 'Lithium Ion Pathway within $Li_7La_3Zr_2O_{12}$-Polyethylene Oxide Composite Electrolytes' Angew. Chem. Intern. Ed., 55, 12538-12542 (2016). https://doi.org/10.1002/anie.201607539
  39. W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, and Y. Cui, 'Enhancing Ionic Conductivity in Composite Polymer Electrolytes with Well-Aligned Ceramic Nanowires' Nature Energy, 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
  40. K.(K.) Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E.D. Wachsman, and L. Hu, 'Flexible, Solid-State, Ion-Conducting Membrane with 3D Garnet Nanofiber Networks for Lithium Batteries' Proc. Natl. Acad. Sci., 113, 7094-7099 (2016) https://doi.org/10.1073/pnas.1600422113
  41. D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu, R.H. Dauskardt, and Y. Cui, 'A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus' Adv. Mater., 30, 1802661 (2018). https://doi.org/10.1002/adma.201802661
  42. S. Wang, Q.X. Shi, Y.S. Ye, Y. Wang, H.Y. Peng, Z.G. Xue, X.L. Xie, and Y.W. Mai, 'Polymeric Ionic Liquid-Functionalized Mesoporous Silica Nanoplates: A New High-Performance Composite Polymer Electrolyte for Lithium Batteries' Electrochim. Acta, 245, 1010-1022 (2017). https://doi.org/10.1016/j.electacta.2017.05.125
  43. W. Liu, D. Lin, J. sun, G. Zhou, and Y. Cui, 'Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires' ACS Nano, 10, 11407-11413 (2016). https://doi.org/10.1021/acsnano.6b06797
  44. X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, Y. Xiang, and Y. Cui, 'Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity' Nano Lett., 18, 3829-3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
  45. X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H.-W. Lee, and Y. Cui, 'Solid-State Lithium-Sulfur Batteries Operated at $37^{\circ}C$ with Composites of Nanostructured $Li_7La_3Zr_2O_{12}$/Carbon Foam and Polymer' Nano Lett., 17, 2967-2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
  46. K. Takeda, 'Progress and Perspective of Solid-State Lithium Batteries' Acta Mater., 61, 759-770 (2013). https://doi.org/10.1016/j.actamat.2012.10.034
  47. J. Haruyama, K. Sodeyama, L. Han, K. Takeda, and Y. Tateyama, 'Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-ion Battery' Chem. Mater., 26, 4248-4255 (2014). https://doi.org/10.1021/cm5016959
  48. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, 'Towards Safe Lithium Metal Anode in Rechargeable Lithium Batteries: A Review' Chem. Rev., 117, 10403-10473 (2017) https://doi.org/10.1021/acs.chemrev.7b00115