DOI QR코드

DOI QR Code

The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2

Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성

  • Yang, Su-Bin (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Yoo, Gi-Won (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Jang, Byeong-Chan (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Son, Jong-Tae (Department of Nano Polymer Science & Engineering, Korea National University of Transportation)
  • 양수빈 (한국교통대학교 나노화학소재공학과) ;
  • 유기원 (한국교통대학교 나노화학소재공학과) ;
  • 장병찬 (한국교통대학교 나노화학소재공학과) ;
  • 손종태 (한국교통대학교 나노화학소재공학과)
  • Received : 2014.02.17
  • Accepted : 2014.05.30
  • Published : 2014.08.31

Abstract

In this study, a positive-electrode material in a lithium secondary battery $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$ was synthesized as precursor by co-precipitation. Cathode material was synthesized by adding iron. The synthesized cathode material was analyzed by scanning electron microscope and x-ray diffraction. The analysis of x-ray diffraction showed that the a-axis and c-axis is increased by doping iron. And $I_{(003)}/I_{(104)}$ is increased and $I_{(006)}+I_{(102)}/I_{(101)}$ is decreased. Through this result, it was confirmed that the structural stability is improved. And impedance measurements show that the charge transfer resistance ($R_{ct}$) is lowered by doping iron. Consequently, electrochemical properties are improved by doping iron. In particular, the cycle characteristics are improved at a high temperature condition (328 K). Structural stabilities are contributing to the cycle properties.

본 연구에서는 리튬 이차전지의 양극 재료인 $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$를 공침법(Co-precipitation)으로 전구체를 합성 하였고, 철(Fe)을 도핑 함으로써 양극 활물질을 합성하였다. 합성된 양극 활물질을 시차주사현미경 (SEM, Scanning electron microscope)과 X선-회절분석(XRD, X-ray diffraction)으로 분석하였다. X선-회절분석 결과 철(Fe)을 도핑 함으로써 a축과 c축이 증가하였고, $I_{(003)}/I_{(104)}$의 비가 증가하는 것과 $I_{(006)}+I_{(102)}/I_{(101)}$비가 작아지는 것을 통해 구조적 안정성이 증가하는 것을 확인했다. 전기화학적 특성 측정 결과 사이클 특성이 향상되었고, 임피던스 측정 결과 전하 이동 저항($R_{ct}$) 값이 낮아짐을 통해 전기화학적 분석 결과에서도 철(Fe)을 도핑 하였을 때 개선 된 특성을 나타내었다. 특히, 고온 조건에서 사이클 특성이 개선되는 것을 확인 하였는데, 이는 구조적 안정성이 사이클 특성에 기여하였기 때문이다.

Keywords

References

  1. H. G. Lee, Y. J. Kim, and W. I. Cho, "Recent Trend of Lithium secondary Batteries for Cellular Phones", J. Korean Electrochem. Soc., 10, 31-35 (2007). https://doi.org/10.5229/JKES.2007.10.1.031
  2. J. B. Im and J. T. Son, "The Study on Structural Change and Improvement of Electrochemical Properties by Coprecipitation Condition of Li[$Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ Electrode", J. Korean Electrochem. Soc., 14, 98-103 (2011). https://doi.org/10.5229/JKES.2011.14.2.098
  3. R. J. Gummow and Y. He, "Recent progress in the development of $Li_2MnSiO_4$ cathode materials", J. Power Sources, 253, 315 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.082
  4. P. He, H. Wang, L. Qi, and Tetsuya Osaka, "Synthetic optimization of spherical $LiCoO_2$ and precursor via uniform-phase precipitation", J. Power Sources, 158, 529 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.044
  5. M. V. Reddy, T. W. Jie, C. J. Jafta, K. I. Ozoemena, M. K. Mathe, A. S. Nairf, S. S. Pengg, M. S. Idrisg, G. Balakrishnah, F. I. Ezemai, and B. V. R. Chowdari, "Studies on 순수물질 and Mg-doped $LiCoO_2$ as a cathode material for Lithium ion Batteries", Electrochimica Acta, (2013).
  6. S. H. Ju, H. C. Jang, and Y. C. Kang, "Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape", Electochimica Acta, 52, 7286 (2007). https://doi.org/10.1016/j.electacta.2007.05.064
  7. H. K. Park, "The Research and Development Trend of Cathode Materials in Lithium Ion Battery" J. Korean Electrochem. Soc., 11, 197-210 (2008). https://doi.org/10.5229/JKES.2008.11.3.197
  8. S. W. Cho, J. H. Ju, S. H. Ryu, and K. S. Ryu, "Structure and Electrochemical Characterization of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ as the Cathode Material Synthesized by Simplecombustion Method", J. Korean Electrochem. Soc., 13, 264 (2010). https://doi.org/10.5229/JKES.2010.13.4.264
  9. D. H. Kang, N. Arailym, J. E. Chae, and S. S. Kim, "Influence of Precursor on the Electrochemical Properties of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ Cathode for the Lithium Secondary Battery", J. Korean Electrochem. Soc., 16, 191 (2013). https://doi.org/10.5229/JKES.2013.16.4.191
  10. P. Y. Liao, J. G. Duh, and H. S. Sheu, "SubStructural and thermal properties of $LiNi_{0.6x}Mg_xCo_{0.25}Mn_{0.15}O_2$ cathode materials", J. Power Sources, 183, 766 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.058
  11. D. Yanhuai, Z. Ping, and J. Yong, "Synthesis and Electrochemical Properties of Li [$Ni_{l/3}\;C0_{1/3}\;Mn_{l/3}]_{1-x}\;La_xO_2$ Cathode Materials", J. Rare Earth, 25, 268 (2007). https://doi.org/10.1016/S1002-0721(07)60486-4
  12. K. Shizuka, C. Kiyohara, K. Shima, and Y. Takeda, "Effect of $CO_2$ on layered $Li_{1+z}Ni_{1-x-y}Co_xM_yO_2$ (M = Al, Mn) cathode materials for lithium ion batteries" J. Power Sources, 166, 223 (2007).
  13. H. Li, G. Chen, B. Zhang, and J. Xu, "Advanced electrochemical performances of Li[$Ni_{1/3-x}Fe_xCo_{1/3}Mn_{1/3}]O_2$ as cathode materials for lithium battery", Solid state commun., 146, 115 (2008). https://doi.org/10.1016/j.ssc.2008.02.006
  14. G. W. Yoo, H. J. Jeon, and J. T. Son, "Effects of Calcinations Temperature on the Electrochemical Properties of Li[$Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ Lithium-ion cathode Materials", J. Korean Electrochem. Soc., 16, 59 (2013). https://doi.org/10.5229/JKES.2013.16.2.59
  15. D. Liu, Z. Wang, L. chen, "Comparison of Structure and electrochemistry of $Al^-$ and $Fe^-$ doped $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$", Electrochimica Acta, 51, 4199 (2006). https://doi.org/10.1016/j.electacta.2005.11.045
  16. S. Choo, Y. G. Beom, S. Kim, and K. Han, "Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li($Ni_{0.5}Mn_{0.3}Co_{0.2})O_2$ as Cathode Material by Supercritical Hydrothermal Synthesis Method" J. Korean Electrochem. Soc., 16, 151-156 (2013). https://doi.org/10.5229/JKES.2013.16.3.151
  17. C. Delmas, M. MeAneA trier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie , G. Prado, M. GruE ne, and L. FourneA s, "An overview of the Li(Ni,M)$O_2$ systems: syntheses, structures and properties", Electrochimica Acta, 45, 243 (1999). https://doi.org/10.1016/S0013-4686(99)00208-X
  18. X. Zhang, W. J. Jiang, A. Mauger, Qilu, F. Gendron, and C. M. Julie, "Minimization of the cation mixing in $Li_{1+x}(NMC)_{1-x}O_2$ as cathode material", J. Power Sources, 195, 1292 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.029
  19. H. J. Noh, S. Youn, C. S. Yoon, and Y. K. Sun, "Comparison of the structural and electrochemical properties of layered Li[$Ni_xCo_yMn_z]O_2$ (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries", J. Power Sources, 223, 121 (2013).
  20. C. S. Kang, C. Kim, and J. T. Son, "Synthesis of $LiFePo_4$ nano-fibers for cathode materials by electrospinning process", J. KIEEME, 13, s304 (2012).
  21. S. M. Lee, S. H. Oh, B. J. Lee, W. I. Cho, and H. Jang, "Improving the Capacity Retention of $LiNi_{0.8}Co_{0.2}O_2$ by $ZrO_2$ Coating", J. Korean Electrochem. Soc., 9, 6-9 (2006). https://doi.org/10.5229/JKES.2006.9.1.006
  22. P. Gao, G. Yang, H. Liu, L. Wang, and H. Zhou, "Lithium diffusion behavior and improved high rate capacity of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ as cathode material for lithium batteries", Solid State Ionics, 207, 50 (2012). https://doi.org/10.1016/j.ssi.2011.11.020