DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Solid Polymer Electrolytes Using BF3LiMA as Monomer

BF3LiMA를 단량체로 하는 고체 고분자전해질 합성과 전기화학적 특성

  • Kim, Kyung-Chan (Department of Engineering Chemistry, Chungbuk National University) ;
  • Ryu, Sang-Woog (Department of Engineering Chemistry, Chungbuk National University)
  • Received : 2011.11.06
  • Accepted : 2011.11.15
  • Published : 2011.11.30

Abstract

Solid polymer electrolytes using $BF_3LiMA$ as monomer were synthesized by usual one step radical polymerization in THF solvent. The effect of $BF_3LiMA$ concentration on ionic conductivity and electrochemical stability was investigated by AC impedance measurement and linear sweep voltammetry. As a result, the highest ionic conductivity reached $7.71{\times}10^{-6}S\;cm^{-1}$ at $25^{\circ}C$ was obtained in 12.9 wt% of $BF_3LiMA$ content. Further increase or decrease of $BF_3LiMA$ content result to decrease the ionic conductivity due to the brittle matrix properties in former case and the insufficient number of charge carrier in the latter case. Furthermore, since the counter-anion was immobilized in the self-doped solid polymer electrolytes, high electrochemical stability up to 6.0 V was observed even in $60^{\circ}C$.

합성된 $BF_3LiMA$ 리튬염을 단량체로 사용하는 고체 고분자전해질을 제조하고 $BF_3LiMA$의 농도가 이온전도도에 미치는 영향 및 전기화학적 안정성을 교류임피던스 측정법과 선형전위주사법을 통하여 평가하였다. 그 결과 $BF_3LiMA$가 12.9 wt%인 고체 고분자전해질에서 $7.71{\times}10^{-6}S\;cm^{-1}$의 가장 높은 $25^{\circ}C$ 이온전도도가 관찰되었으며 이 값을 전후로 이온전도도는 다소 감소하는 경향이 나타났다. 이러한 결과는 저농도의 $BF_3LiMA$에서 발생할 수 있는 리튬염의 부족과 고농도의 $BF_3LiMA$에서는 발생할 수 있는 고분자기질의 유동성 감소가 원인으로 해석된다. 또한 $BF_3LiMA$ 기반의 고체 고분자전해질은 음이온이 고정되어 있는 자기-도핑형 계열로서 $60^{\circ}C$에서 6.0 V까지 우수한 전기화학적 안정성을 보여주었다.

Keywords

References

  1. J. MacCallum and C. Vincent, 'Polymer Electrolyte Reviews-1' 69, Elsevier Applied Science, New York (1987).
  2. G.-A. Nazri, and G. Pistoia, 'Lithium Batteries Science and Technology' 574, Kluwer Academic Publishers, New York (2004).
  3. M. Yosho, R. Brodd, and A. Kozawa, 'Lithium-ion Batteries' 413, Springer, New York (2009).
  4. S. Zhang, L. Yang, and Q. Liu, 'Single-ion conductivity and carrier generation of polyelectrolytes' Solid State Ionics, 76, 121 (1995). https://doi.org/10.1016/0167-2738(94)00224-G
  5. M. Watanabe, H. Tokuda, and S. Muto, 'Anionic effect on ion transport properties in network polyether electrolytes' Electrochimica Acta, 46, 1487 (2001). https://doi.org/10.1016/S0013-4686(00)00743-X
  6. Y. Kato, S. Yokoyama, T. Yabe, H. Ikuta, Y. Uchimoto, and M. Wakihara, 'Ionic conductivity and transport number of lithium ion in polymer electrolytes containing PEGborate ester' Electrochimica Acta, 50, 281 (2004). https://doi.org/10.1016/j.electacta.2003.12.066
  7. J. Cowie and G. Spence, 'Novel single ion, comb-branched polymer electrolytes' Solid State Ionics, 123, 233 (1999). https://doi.org/10.1016/S0167-2738(99)00080-6
  8. X. Sun and C. Angell, 'New single ion conductors ("polyBOP" and analogs) for rechargeable lithium batteries' Solid State Ionics, 175, 743 (2004). https://doi.org/10.1016/j.ssi.2003.11.045
  9. H. Allcock, D. Welna, and A. Maher, 'Single ion conductors-polyphosphazenes with sulfonimide functional groups' Solid State Ionics, 177, 741 (2006). https://doi.org/10.1016/j.ssi.2006.01.039
  10. N. Byrne, D. MacFarlane, and M. Forsyth, 'Composition effects on ion transport in a polyelectrolyte gel with the addition of ion dissociators' Electrochimica Acta, 50, 3917 (2005). https://doi.org/10.1016/j.electacta.2005.02.068
  11. X. Sun, J. Hou, and J. Kerr, 'Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate' Electrochimica Acta, 50, 1139 (2005). https://doi.org/10.1016/j.electacta.2004.08.011
  12. D. Sadoway, B. Hyang, P. Trapa, P. Soo, P. Bannerjee, and A. Mayes, 'Self-doped block copolymer electrolytes for solid-state rechargeable lithium batteries' J. Power Sources, 97-98, 621 (2001). https://doi.org/10.1016/S0378-7753(01)00642-5
  13. J. Travas-Sejdic, R. Steiner, J. Desilvestro, and P. Pickering, 'Ionic conductivity of novel polyelectrolyte gels for secondary lithium-ion polymer batteries' Electrochimica Acta, 46, 1461 (2001). https://doi.org/10.1016/S0013-4686(00)00740-4
  14. J. Sun, D. R. MacFarlane, and M. Forsyth, 'Lithium polyelectrolyte-ionic liquid systems' Solid State Ionics, 147, 333 (2002). https://doi.org/10.1016/S0167-2738(02)00028-0
  15. P. H. Park, Y.-K. Sun, and D.-W. Kim, 'Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries' Electrochimica Acta, 50, 375 (2004). https://doi.org/10.1016/j.electacta.2004.01.110
  16. Z. Florjanczyk, W. Bzducha, N. Langwald, J. R. Dygas, F. Krok, and B. Misztal-Faraj, 'Lithium gel polyelectrolytes based on crosslinked maleic anhydride-styrene copolymer' Electrochimica Acta, 44, 3563 (2000).
  17. P. P. Prosini and B. Banow, 'Composite polyether electrolytes with a poly(styrenesulfonate) lithium salt and lewis acid type additive' Electrochimica Acta, 48, 1899 (2003). https://doi.org/10.1016/S0013-4686(03)00268-8
  18. S.-W. Ryu, P. Trapa, S. Olugebefola, J. Gonzalez-Leon, D. Sadoway, and A. Mayes, 'Effect of counter ion placement on condutcitity in single-ion conducting block copolymer electrolytes' J. Electrochem. Soc., 152(1), A158 (2005). https://doi.org/10.1149/1.1828244
  19. W.-C. Kang, H.-G. Park, K.-C. Kim, and S.-W. Ryu, 'Synthesis and electrochemical properties of lithium methacrylate-based self-doped gel polymer electrolytes' Electrochimica Acta, 54, 4540 (2009). https://doi.org/10.1016/j.electacta.2009.03.050
  20. H. Xie, J. Guan, and J. Guo, 'Synthesis and properties of ionic conducting crosslinked polymer and copolymer based on dimethacryloyl poly(ethylene glycol)' European Polymer Journal, 37, 1997 (2001). https://doi.org/10.1016/S0014-3057(01)00086-6
  21. T. Czerniawski, 'The inhibited polymerization of lithium methacrylate and copolymerization with acrylonitrile' European Polymer Journal, 36, 635 (2000). https://doi.org/10.1016/S0014-3057(99)00105-6
  22. Y. Lee and J. Park, 'Electrochemical characteristics of polymer electrolytes based on P(VdF-co-HFP)/PMMA ionomer blend for PLIB' J. Power Sources, 97-98, 616 (2001). https://doi.org/10.1016/S0378-7753(01)00575-4
  23. F. Krok, J. R. Dygas, B. Misztal-Faraj, Z. Florjanczyk, and W. Bzducha, 'Impedance and polarisation studies of new lithium polyelectrolytes gels' J. Power Sources, 81-82, 766 (1999). https://doi.org/10.1016/S0378-7753(99)00099-3

Cited by

  1. Synthesis of Poly(MMA-co-PEGMA) Electrolytes by Grafting-onto Method and Effect of Composition on Ionic Conductivities vol.16, pp.4, 2013, https://doi.org/10.5229/JKES.2013.16.4.198
  2. Synthesis of Self-doped Poly(PEGMA-co-BF3LiMA) Electrolytes and Effect of PEGMA Molecular Weight on Ionic Conductivities vol.15, pp.4, 2012, https://doi.org/10.5229/JKES.2012.15.4.230