• Title/Summary/Keyword: Liouville-type theorems

Search Result 14, Processing Time 0.021 seconds

LIOUVILLE THEOREMS FOR GENERALIZED SYMPHONIC MAPS

  • Feng, Shuxiang;Han, Yingbo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.669-688
    • /
    • 2019
  • In this paper, we introduce the notion of the generalized symphonic map with respect to the functional ${\Phi}_{\varepsilon}$. Then we use the stress-energy tensor to obtain some monotonicity formulas and some Liouville results for these maps. We also obtain some Liouville type results by assuming some conditions on the asymptotic behavior of the maps at infinity.

RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING

  • Anastassiou, George A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1423-1433
    • /
    • 2019
  • Here we present the right and left Riemann-Liouville fractional fundamental theorems of fractional calculus without any initial conditions for the first time. Then we establish a Riemann-Liouville fractional Polya type integral inequality with the help of generalised right and left Riemann-Liouville fractional derivatives. The amazing fact here is that we do not need any boundary conditions as the classical Polya integral inequality requires. We extend our Polya inequality to Choquet integral setting.

REMARKS ON LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS

  • Li, Zhouyu;Liu, Pan;Niu, Pengcheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1151-1164
    • /
    • 2020
  • The aim of this paper is to establish Liouville type results for the stationary MHD equations. In particular, we show that the velocity and magnetic field, belonging to some Lorentz spaces, must be zero. Moreover, we also obtain Liouville type theorem for the case of axially symmetric MHD equations. Our results generalize previous works by Schulz [14] and Seregin-Wang [18].

LIOUVILLE THEOREMS FOR THE MULTIDIMENSIONAL FRACTIONAL BESSEL OPERATORS

  • Galli, Vanesa;Molina, Sandra;Quintero, Alejandro
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1099-1129
    • /
    • 2022
  • In this paper, we establish Liouville type theorems for the fractional powers of multidimensional Bessel operators extending the results given in [6]. In order to do this, we consider the distributional point of view of fractional Bessel operators studied in [12].

Geometry of (p, f)-bienergy variations between Riemannian manifolds

  • Embarka Remli;Ahmed Mohammed Cherif
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.251-261
    • /
    • 2023
  • In this paper, we extend the definition of the Jacobi operator of smooth maps, and biharmonic maps via the variation of bienergy between two Riemannian manifolds. We construct an example of (p, f)-biharmonic non (p, f)-harmonic map. We also prove some Liouville type theorems for (p, f)-biharmonic maps.

GRADIENT ESTIMATES AND HARNACK INEQUALITES OF NONLINEAR HEAT EQUATIONS FOR THE V -LAPLACIAN

  • Dung, Ha Tuan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1285-1303
    • /
    • 2018
  • This note is motivated by gradient estimates of Li-Yau, Hamilton, and Souplet-Zhang for heat equations. In this paper, our aim is to investigate Yamabe equations and a non linear heat equation arising from gradient Ricci soliton. We will apply Bochner technique and maximal principle to derive gradient estimates of the general non-linear heat equation on Riemannian manifolds. As their consequence, we give several applications to study heat equation and Yamabe equation such as Harnack type inequalities, gradient estimates, Liouville type results.

LIOUVILLE THEOREMS OF SLOW DIFFUSION DIFFERENTIAL INEQUALITIES WITH VARIABLE COEFFICIENTS IN CONE

  • Fang, Zhong Bo;Fu, Chao;Zhang, Linjie
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.43-55
    • /
    • 2011
  • We here investigate the Liouville type theorems of slow diffusion differential inequality and its coupled system with variable coefficients in cone. First, we give the definition of global weak solution, and then we establish the universal estimate (does not depend on the initial value) of solution by constructing test function. At last, we obtain the nonexistence of non-negative non-trivial global weak solution within the appropriate critical exponent. The main feature of this method is that we need not use comparison theorem or the maximum principle.

THEOREMS OF LIOUVILLE TYPE FOR QUASI-STRONGLY $\rho$-HARMONIC MAPS

  • Yun, Gab-Jin
    • The Pure and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.107-111
    • /
    • 2002
  • In this article, we prove various properties and some Liouville type theorems for quasi-strongly p-harmonic maps. We also describe conditions that quasi-strongly p-harmonic maps become p-harmonic maps. We prove that if $\phi$ : $M\;\longrightarrow\;N$ is a quasi-strongly p-harmonic map (\rho\; $\geq\;2$) from a complete noncompact Riemannian manifold M of nonnegative Ricci curvature into a Riemannian manifold N of non-positive sectional curvature such that the $(2\rho-2)$-energy, $E_{2p-2}(\phi)$ is finite, then $\phi$ is constant.

  • PDF