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ABSTRACT. In this paper, we extend the definition of the Jacobi operator of smooth maps,
and biharmonic maps via the variation of bienergy between two Riemannian manifolds.
We construct an example of (p, f)-biharmonic non (p, f)-harmonic map. We also prove
some Liouville type theorems for (p, f)-biharmonic maps.

1. Introduction

Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian manifolds.
The p-energy of ¢ is defined by

(1.1) E,(¢:D) = }D /D dofPo,  (p>2),

where D is a compact subset of M. We say that ¢ is a p-harmonic map if it is a
critical point of the p-energy functional, that is to say, if it satisfies the following
Euler-Lagrange equation (see [1, 2, 3, 6, 7])

(1.2) () = divY (|dp|P~2dyp) = 0.
Let f be a smooth positive function on M. The (p, f)-energy of ¢ is defined by
1
(13) BusloiD) = [ fldep,
pPJp
The (p, f)-energy functional (1.3) includes as a special case (f = 1) the p-energy

functional, and a special case (p = 2) the f-energy functional (see [4, 5, 13]). We
call (p, f)-harmonic (or generalized p-harmonic) a smooth map ¢ which is a critical
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point of the (p, f)-energy functional for any compact domain D.

Theorem 1.1. (The first variation of the (p, f)-energy [14]) Let ¢ be a
smooth map from Riemannian manifold (M,g) to Riemannian manifold (N,h),
and {1 }ie(—e,e) @ smooth variation of ¢ to support in D C M. Then

(14) GEnslen D) _ == [ ho.ms@)ey

t=0

where T, £ (@) is the (p, f)-tension field of ¢ given by

(1.5) To,s (@) = divM (fldpP2dyp) = fr, () + |de|P 2 dip(grad™ f),

and v = % — denotes the variation vector field of {¢t}ie(—e.e)-

The extension of p-harmonic and f-harmonic maps between Riemannian manifolds
has been studied by several authors (see for example, P. Baird [2], N. Course [4],
A. M. Cherif, M. Djaa, R. Nasri, S. Ouakkas and K. Zagga [5, 13]). In this paper,
we extend the definition of p-biharmonic maps between Riemannian manifolds.
Liouville type theorems for p-harmonic and p-biharmonic maps between complete
smooth Riemannian manifolds have been done by many authors. J. Liu, D. J. Moon,
H. Liu, S. D. Jung [9, 11] and N. Nakauchi [12] proved the Liouville type theorem
for p-harmonic maps. A. M. Cherif [10] also proved the Liouville type theorem for p-
biharmonic maps. The purpose of this article is also to provide a proof of Liouville’s
type theorem for (p, f)-biharmonic maps from compact orientable Riemannian man-
ifold without boundary (resp. from complete non-compact Riemannian manifold)
into a Riemannian manifold with non-positive sectional curvature.

2. Main Results

In the following, we will compute the second variation formula of the (p, f)-
harmonic maps.

Theorem 2.1. (The second variation of the (p, f)-energy) Let ¢ be an (p, f)-
harmonic map from Riemannian manifold (M, g) to Riemannian manifold (N, h),
and {©t s} (t,s)e(—e,e)x (—e,e) @ SMooth variation of ¢ to support in D C M. We set

890155 890755
2.1 = ’ = ’ .
(2.1) v ot lims—o’ 0s lt=s=0
Then we have
82
2.2 9B, i(prs:D = [ W(J?,(v),w)v,,
(22) Gt oD = [ g,

where szf(v) is the generalized Jacobi operator of ¢ given by

Trs) = —fldg|P~? trace, RN (v, dp)de — trace, V¥ f|dp[P~*V#u
(23) ~(p — 2) trace, V(V¥u, dp) fldpl?~* de.
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Proof. Let ¢ : M X (—e,€) X (—e,€) = N be a smooth map defined by

oz, t,s) = prs(x), Y(mt,8) € M X (—€,€) X (—¢,¢€).

We have ¢(z,0,0) = ¢(x), and the variation vectors fields v, w associated to the
variation { s} (t,s)e(—c,e)2 are given by

o0 0
(2.4) v(r) = d(ac,O.,O)(b(a)v w(r) = d(m70,0)¢(£)7 Vo e M.

Let {e;} be an orthonormal frame with respect to g on M, such that Vé‘;[el- =0 at
x e M, foralli,j=1,..,m. We compute

@) oD = L[ el
' dtds Ep.1 (¢t t=s=0  pJp° Otds Pl ] oo

First, note that

0?2 0 0 P
I p - = 2\ 2
9t0s 190l ot <a (Iders[) >
0 (p z-1 0
= 5(5 (Idee.|?) a—(|d<Pts| ))
0
= (9_ (p|d90t Slp (vd)ﬁd(b(eiv070)7d¢(6i7070))) .
ds
So that
0? o
GG |d90t S|p = (|d<Pt S| ) (V d¢(6170 O) d¢(61a0 O))
+p|dg0t7s|p Qh(V‘% V‘%d¢(ei,0,0),d¢(ei,0,0))
+pldr s h(V, dé(e:, 0,0), VY dd(e:, 0,0)).
Thus
0 P
m|d@t,s|p = p(p_ 2)|d@t,s|p7 h’(V%d(b(eJ?050)7d¢(6J5070))

h(V% dg(e;,0,0), de(e;, 0,0))
ds
+plder s [P2h(V%, V% d(e;,0,0), d(e;, 0,0))
Os ot
+plder o|P72R(V, dé(e;,0,0), V% do(es, 0,0)).
Os ot

By (2.4), and the definition of the curvature tensor of (N, h), with

0 0
V% dé(ei0,0) = V{, odd(5.), V% délei,0,0) = V{, 5dé(-).

8t)’
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we obtain the following equation

1, 0? _
o gigs el |, = =2l h(VE v, dp(e;))h(VE w, dp(e:))
+f1dplP (RN (w, dp(e;))v, dp(e;))
_ 0
+fde" 2 h(VEVS do(z0)| o dgle)
(2.6) +fldeP?h(VE w, VE v).

The first term on the left-hand side of (2.6) is given by
(p = 2)fldpP~*h(VE v, dp(e)))h(VE w, dp(e:)) = divHon
(2.7) —(p — 2)h(w, trace, V(V¥v, dy) f|de|P~*dy),
where (V#v,dp) = h(VE v,dp(e;)), and wi € T'(T*M) is defined by
wi(X) = (p = 2)h(w, (Vv,dp) fldp[P " dp(X)), VX € D(TM).
By the (p, f)-harmonicity condition of ¢, the third term on the left-hand side of
(2.6) is given by

ydp(e;)) = divMws,

t=s=0

0
(2:8) fldP~*h(VEVS, do(5)

where wy € T'(T* M) is defined by
0 _
ws(X) = WV do()| __ fldgl"2dp(X)), VX € D(TM).
The fourth term on the left-hand side of (2.6) is given by
FldelP=*h(VE w, VE v) ei (M(w, fldp|""*VEv)) = h(w, VE, flde|"*VEv)
(2.9) = divMwz — h(w, trace, V¥ f|dp|P =2V *?v),

where w3(X) = h(w, flde|P~2V%v), for all X € I'(TM). Substituting (2.7), (2.8)
and (2.9) in (2.6), we obtain

1
p

0? . _
f@|d¢t,5|p o divM wi — (p — 2)h(w, trace, V(V?u, dp) f|de[P~*dip)
= fldplP "2 h(RY (v, dp(ei))dip(e:), w) + div*wp
(2.10) +divMws — h(w, trace, V¢ f|dp|P~2V*v).
By the equations (2.5), (2.10), and the divergence Theorem, we get
0? -2 N
%Ep,f(cpt,s; D)’t:s:O = /D h( — flde|P~*trace, R™ (v, dp)dy

—(p — 2) trace, V{(V¥v, dp) fldp|"dy
—trace, V¥ f|dp[P~2V*4v, w) Vg.
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This completes the proof of the theorem. O

In [8], G. Y. Jiang calculated the first variation formula of the bienergy func-
tional, thereby finding the biharmonic maps between two Riemannian manifolds.
A. M. Cherif [10], introduced the notion of p-biharmonic maps. In the following,
we extend the definition of p-biharmonic maps between Riemannian manifolds.
The (p, f)-bienergy of a smooth map ¢ : (M, g) = (N, h) between two Riemannian
manifolds is defined by

1
Baps(@iD) =5 [ Irns@lPo, (022,

where f is a smooth positive function on M, and D a compact subset of M. A map
is called (p, f)-biharmonic (or generalized p-biharmonic), if it is a critical point of
the (p, f)-bienergy functional over any compact subset D of M. Under the above
notation, we obtain the following result.

Theorem 2.2. (The first variation of the (p, f)-bienergy) Let ¢ : (M,g) —
(N,h) be a smooth map between two Riemannian manifolds, and {¢i}ie(—c,e) @
smooth variation of ¢ to support in D C M. Then

d
(211) GEns(eiD)|_ == [ homp o

t t=0 D
where To p ¢ (@) is the (p, f)-bitension field of ¢ given by
Top () = —fldpP™* trace; RN (1,1 (1), dp)dy — tracey V¥ fldo|"™ V¥ 7, ¢ ()
(2.12) —(p — 2) trace, V(V?7, (), dp) f|deP~* dep,
and v = % denotes the variation vector field of {i}te(—e.c)-

=0

Proof. Let ¢ : M x (—€,€) = N be a smooth map defined by ¢(x,t) = ¢:(z) for
all (x,t) € M x (—¢,¢€), we have ¢(z,0) = p(x), and the variation vector field v
associated to the variation {¢¢}1e(—e.¢) is given by v(x) = d(m)o)qb(%), forallz € M.
Let {e;} be an orthonormal frame with respect to g on M, such that Vé‘;[el- =0 at
x € M for alli,5 =1, ...,m. We compute

g»

d ¢
1) GEasleaD)| = [ Wm0t e

By using (1.5), we have
V% 1.1 (91) = V% Vi, o) Fldprl" 2o (e:, 0).
From the definition of curvature tensor of (N, h), we get

- 0 -
V% Vie o fldorl"2d(ei0) = RY(do(5.),dd(ei,0))fldiy["~?dg (e:, 0)
(2.14) +V0, 0V fldpdP2dg (e, 0).
© ot
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By the compatibility of V¢ with the metric h, we obtain
W(VE N, fldidP=2dg(ei, 0), 7.4 (1))

= ¢ (h(v(%f|d%|p_2d¢(€ia 0), 7p,£ (1))
(2.15) ~h(V fldpdl2dp(e1,0), V{,, )71 (0)).
By using the property
Vide(Y) = Vide(X) + do((X,Y]),

(see [1]), with X = 2 and Y = f|dg:|P~%(e;,0), and by a simple calculation, we
get

_ _ 0
VY, fldgdP2dge0) = fldg P2V, o dé(+)
ot v Bt

- 0
+(p = 2)flder PV, ) dd(5), db(e;, 0))dd(ei, 0).
Substituting the last equation in (2.15), we obtain

W(VE NS fldedP"dé(ei, 0),1, 1 (00))|

= divMy + divMne — fldeP2R(VE v, VE 7, 1 ()

(2.16) —(p = 2) fldelP~*h(VE v, dp(e)h(dp(ei), VE T, (),
where 71 and 7y are defined by

m(X) = fldelPh(V5, 75 (9)),

1(X) = (p—2)fldelP~ (V5. dp)h(do(X), 7p,1 (),

for all X € T'(T'M). The equation (2.16) is equivalent to the following

W2V fldgiP=dd(e:, 0), 1,1 (20))|

= diva + diVMng — diVMn3 + h(v, Vfif|dg0|p_2VfiTp)f(cp))
(2.17) —divng + (p = 2)h(v, VE, fldel? {dp, V7,1 (9))dip(e5))-
where 13 and 14 are defined by
13(X) = fldelP"?h(v, V57,5 (9)),
na(X) = (p—2)fldplP~*{dp, Vo7, (9)) h(v, dp(X)),

for all X € I'(T'M). By equations (2.13), (2.14), (2.17), and the divergence Theo-
rem, the Theorem 2.2. follows. O
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Remark 2.3. For any smooth map ¢ : (M, g) — (N, h) between two Riemannian
manifolds, we have

Top,f () = JZf(Tnf(‘P))'

From Theorem 2.2., the Euler-Lagrange equation for the (p, f)-bienergy functional
is 72 p,7(¢) = 0. We deduce:

Corollary 2.4. A smooth map ¢ : (M,g9) — (N,h) between two Riemannian
manifolds is (p, f)-biharmonic if and only if 72 p ¢(¢) = 0.

Remark 2.5. If the (p, f)-tension field of a smooth map ¢ : (M, g) — (R™, (, Ygn)
is parallel along ¢ (that is, the components of 7, f(p) are constants), then ¢ is
(p, f)-biharmonic map.

Example 2.6. The smooth map

¢ : (R2\{(0,0)} x R, dz? 4 dy? + dz?)
(z,y,2)

- (R? du® + dv?),
= (Va2 + % 2)
is (p, f)-biharmonic non (p, f)-harmonic, where

flzyy,2) = 2 %cr\/a2 + y2, Y(x,y,2) € R*\{(0,0)} x R,

for some constant ¢ > 0, and p > 2. Indeed; we have g = da? + dy® + dz?
and h = du® + dv®. We set ¢1(1,y,2) = /22 + 32 and pa(x,y,2) = z, for all
(z,y,2) € R2\{(0,0)} x R. We compute

Opa s
6:51- al'j

o ¢ Opa Opp
5”50‘5 6:101- al'j

_ (9%

= 2.

ldel* = g"(hap o)

Here, 1 = x, x2 = y, and x3 = z. Thus, the p-tension field of ¢ is given by

=2 0%p, O
W) = 27 5
2% 9

/22 + 2 Our’
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where u; = u and ug = v. From equation (1.5), we get

2" f 0 pi52 O0f Opa 0

T;va(@) = 71;2 +_y2 a—UI + 8_@—6:101 a—ua
c 0 c x2 y? 0

20u 2 |24 T 2] Bun
Therefore, the components of 7, r(¢) = (c,0) are constants. According to Remark
2.4., the map ¢ is (p, f)-biharmonic.

Using the similar technique of Theorem 5 and Theorem 6 in [10], we have the
following Liouville type theorems for (p, f)-biharmonic maps.

Theorem 2.7. (Liouville type theorem for (p, f)-biharmonic maps: com-
pact case) Let (M, g) be a compact orientable Riemannian manifold without bound-
ary, and (N, h) a Riemannian manifold with non-positive sectional curvature. Then,
every (p, f)-biharmonic map from (M,g) to (N,h) is (p, f)-harmonic.

Proof. Let ¢ : (M,g) — (N,h) be a smooth (p, f)-biharmonic map, fix a point
x € M, and let {e;} be an orthonormal frame with respect to g on M, such that
Vé‘;[ei =0atxe M, foralli,j=1,...,m. We have

0 = —f|dgp|p_2 trace, RN(prf(ga), dp)dep — traceg V“"f|d<p|p_2V“"Tp7f(gp)
—(p — 2) trace, V(V¥7, 1 (), di) fldep|P~* dep.

Calculating at x, we get

fldpP~2h(RN (7, 1 (@), dp(ei))dp(es), Tp, ()
= —h(V¢ fldo|" > VE 1 1 (9), Tp. ()

(2.18) —(p — 2)R(VE (V¥ 1 1 (), dip) fdep|P dip (1), T, 1 ().
Let 0y, 02 € T'(T*M) defined by

01(X) = fldelP*h(VE 7,1 () o1 (),

02(X) = (p—2)(V¥7p1(0), dp) fldo[P~*h(dp(X), 7. (),
where X € I'(T'M). So that

divM 01 = h(VZ fldplP2VE 15 (0), Tpp ()
+f1delP " h(VE 11 (), VET1(0)),

(p = 2)A(VE (V971 (), do) fldp|P~*dp(es), 7.5 (@)
+(p = 2)(V?7p,1 (), doo) fldep|P~* h(dep(e:), VE 751 ().

divM 6,

(2.19)
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By (2.18) and (2.19), we obtain

fldeP=2h(RN (7,5 (), d(e;))dp(es), 1o, ()
= —divM 01 + fldp|P2R(VE T 1 (9), VE Tp 1 () — divY 62
+(p — 2)(V¥7p,1 (), do) fldep|P " h(dp(ei), VE T 1 ().

The last equation is equivalent to the following

FldelP2h(RN (1, (10), dip(eq))dp(ei), Tp,f ()
= —div™ 1 + fldg 2V, s ()] — div™ 6
+(p = 2)(V¥7p,5 (), dp)? fldplP~*.
Since the sectional curvature of (N, h) is non-positive, we conclude that
(2.20) —divM 0, + fldeP2V e, 1 (0)* — divM 62 < 0.

By using the Green Theorem, and equation (2.20), we have
(221) | gl 2192m, (o), o

Consequently, V57, ¢(¢) = 0 for all X € I'(T'M). Thus, 7 #(¢) = 0. O

We also get the following result.

Theorem 2.8. (Liouville type theorem for (p, f)-biharmonic maps: non-
compact case) Let (M, g) be a complete non-compact Riemannian manifold, (N, h)
a Riemannian manifold with non-positive sectional curvature and p > 2. Then,
every (p, f)-biharmonic map ¢ from (M, g) to (N, h) satisfying

(2.22) /M FldlP=2my 5 () Py < o, /M Fldel?2v, = oo,

is (p, f)-harmonic.
Proof. Let ¢ : (M,g) — (N,h) be an (p, f)-biharmonic map. We have at x

0 = —fldpl" 2R (1. (), dp(ei)dp(e:) — VE fldpP~*VE 7. 1 ()
—(p = 2)VE(VTp 1 (), dip) fldp|P~ dip(es),
where {e;} is an orthonormal frame on (M, g) such that Vé‘fel- = 0 at z for all

1,7 =1,...,m. Let p be a smooth function with compact support on M. Since the
sectional curvature RY is non-positive, we obtain

0 > —h(VE fldeP >V 1y £(0), 0> (0))
—(p — 2)R(VE (VT 1 (), do) fldo P~ dp(e;), P27, £ ()
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Let 1,82 € T'(T*M) defined by

Bi(X) = h(fldplP V5T £(9), P75 (90)),
Ba(X) = h((V?7ps(p),do) fldelP~*dp(X), p° 11 (¢)),

for all X € T'(T'M). So, the last inequality is equivalent to the following

(2.23) 0 > —div¥ B+ p* fldo[P *h(VE 7 £ (0), VE T 1 ()
+2pei(p) fldolP 2 h(VE Ty 1(9), T, 1 () — (p = 2) div™ By
+(p = 2)p* (VP71 (), d) fdp|P~* h(dp(e:), VE 7,1 (0))
+2(p — 2)pei(p) (VP . (), dp) f P~ h(dp(ei), T, ()

By Young’s inequality, we have
—2pei(p) fldp[P~2h(VE T, f (9)s To, 1 ()

—_

5P FldolP 2 IV E 7 £ (0) P + 2¢4(p)? Fldol? 2| (9)

[\

—2pei(p) (V27,1 (), do) fldp|P~* h(dip(e:), 7,1 ()
< P (V3.1 (0), do)? Fldipl”™" + ei(p)? ldipl” 2|7, 1 ().
According to the last two inequalities, (2.23) becomes
(2.24)  pei(p)* fldol’?|mp (D) > —divY Bi+ p *fldelP 2V E 5 ()
-(p—2) div Bs.
Let p = pr : M — [0,1] be a smooth cut-off function with p = 1 on Bg(z), p = 0 off

Bogr(z) and | grad p| < Z. From the inequality (2.24), and the divergence Theorem,
we find that

p - 1

e2) 15 [ el s @Py = g [ e,
B2 Jpyn(a) 2 JBg(z)

Since [, flde|P~2|7p, £ (¢)|?vy < 00, when R — oo, we get

(2.26) | gl 19z, (o), = o

Therefore, |VE 1, r(¢)]* = 0 for all i = 1,...,m, that is the function |7, f(¢)|? is
constant on M. By the assumption (2.22), we conclude that 7, s(¢) = 0, that is
the map ¢ is (p, f)-harmonic. O
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