DOI QR코드

DOI QR Code

REMARKS ON LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS

  • Li, Zhouyu (School of Mathematics and Statistics Northwestern Polytechnical University) ;
  • Liu, Pan (School of Mathematics and Statistics Beijing Institute of Technology) ;
  • Niu, Pengcheng (School of Mathematics and Statistics Northwestern Polytechnical University)
  • 투고 : 2019.09.10
  • 심사 : 2020.03.05
  • 발행 : 2020.09.30

초록

The aim of this paper is to establish Liouville type results for the stationary MHD equations. In particular, we show that the velocity and magnetic field, belonging to some Lorentz spaces, must be zero. Moreover, we also obtain Liouville type theorem for the case of axially symmetric MHD equations. Our results generalize previous works by Schulz [14] and Seregin-Wang [18].

키워드

참고문헌

  1. D. Chae and S. Weng, Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5267-5285. https://doi.org/10.3934/dcds.2016031
  2. D. Chae and J. Wolf, On Liouville type theorems for the steady Navier-Stokes equations in $R^3$, J. Differential Equations 261 (2016), no. 10, 5541-5560. https://doi.org/10.1016/j.jde.2016.08.014
  3. P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1017/CBO9780511626333
  4. G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, second edition, Springer Monographs in Mathematics, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-09620-9
  5. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, 105, Princeton University Press, Princeton, NJ, 1983.
  6. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
  7. G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrody- namics system with variable density and electrical conductivity, J. Funct. Anal. 267 (2014), no. 5, 1488-1539. https://doi.org/10.1016/j.jfa.2014.06.002
  8. H. Kozono, Y. Terasawa, and Y. Wakasugi, A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions, J. Funct. Anal. 272 (2017), no. 2, 804-818. https://doi.org/10.1016/j.jfa.2016.06.019
  9. Z. Lei and Q. S. Zhang, A Liouville theorem for the axially-symmetric Navier-Stokes equations, J. Funct. Anal. 261 (2011), no. 8, 2323-2345. https://doi.org/10.1016/j.jfa.2011.06.016
  10. F. Lin, L. Xu, and P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differential Equations 259 (2015), no. 10, 5440-5485. https://doi.org/10.1016/j.jde.2015.06.034
  11. G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55. https://doi.org/10.2307/1969496
  12. R. O'Neil, Convolution operators and L(p; q) spaces, Duke Math. J. 30 (1963), 129-142. http://projecteuclid.org/euclid.dmj/1077374532 https://doi.org/10.1215/S0012-7094-63-03015-1
  13. E. Priest and T. Forbes, Magnetic Reconnection, Cambridge University Press, Cambridge, 2000. https://doi.org/10.1017/CBO9780511525087
  14. S. Schulz, Liouville type theorem for the stationary equations of magneto-hydro-dynamics, Acta Math. Sci. Ser. B (Engl. Ed.) 39 (2019), no. 2, 491-497. https: //doi.org/10.1007/s10473-019-0213-7
  15. G. Seregin, Liouville type theorem for stationary Navier-Stokes equations, Nonlinearity 29 (2016), no. 8, 2191-2195. https://doi.org/10.1088/0951-7715/29/8/2191
  16. G. Seregin, Remarks on Liouville type theorems for steady-state Navier-Stokes equations, St. Petersburg Math. J. 30 (2019), no. 2, 321-328; translated from Algebra i Analiz 30 (2018), no. 2, 238-248. https://doi.org/10.1090/spmj/1544
  17. G. Seregin, A Liouville type theorem for steady-state Navier-Stokes equations, arXiv:1611.01563
  18. G. Seregin and W. Wang, Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations, St. Petersburg Math. J. 31 (2020), no. 2, 387-393; translated from Algebra i Analiz 31 (2019), no. 2, 269-278. https://doi.org/10.1090/spmj/1603
  19. W. Wang, Remarks on Liouville type theorems for the 3D steady axially symmetric Navier-Stokes equations, J. Differential Equations 266 (2019), no. 10, 6507-6524. https://doi.org/10.1016/j.jde.2018.11.014