• 제목/요약/키워드: Linear systems

검색결과 5,908건 처리시간 0.027초

지연된 출력을 갖는 비선형 시스템의 상태 관측기 (A State Observer of Nonlinear Systems with Delayed Output)

  • 이성렬
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.613-616
    • /
    • 2012
  • This paper proposes the state observer design for nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

구조화된 불확실성이 있는 시스템의 강인한 극배치 제어 (Robust Pole Placement for Structured Uncertain Systems)

  • 이준화
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.11-15
    • /
    • 1999
  • In this paper, a robust pole placement controller for time invariant linear systems with polytopic uncertainties is presented. The proposed controller is a fixed order output feedback controller which stabilizes the uncertain systems and satisfies the constraints on the closed-loop pole location. The proposed controller can be obtained by minimizing a certain nonlinear object function subject to linear matrix inequality constraints. An algorithm for solving the nonlinear optimization problem is also proposed.

  • PDF

Time to change from a simple linear model to a complex systems model

  • Hong, Yun-Chul
    • Environmental Analysis Health and Toxicology
    • /
    • 제31권
    • /
    • pp.8.1-8.2
    • /
    • 2016
  • A simple linear model to test the hypothesis based on one-on-one relationship has been used to find the causative factors of diseases. However, we now know that not just one, but many factors from different systems such as chemical exposure, genes, epigenetic changes, and proteins are involved in the pathogenesis of chronic diseases such as diabetes mellitus. So, with availability of modern technologies to understand the intricate nature of relations among complex systems, we need to move forward to the future by taking complex systems model.

Design of PD Observers in Descriptor Linear Systems

  • Wu, Ai-Guo;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.93-98
    • /
    • 2007
  • A class of new observers in descriptor linear systems, proportional-derivative(PD) observers, are proposed. A parametric design approach for such observers is proposed based on a complete parametric solution to the generalized Sylvester matrix equation. The approach provides complete parameterizations for all the observer gains, gives the parametric expression for the corresponding left eigenvector matrix of the observer system matrix, realizes elimination of impulsive behaviors, and guarantees the regularity of the observer system.

Lipschitz 비선형 시스템의 강인 저차 상태 관측기 (Robust Reduced Order State Observer for Lipschitz Nonlinear Systems)

  • 이성렬
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.837-841
    • /
    • 2008
  • This paper presents a robust reduced order state observer for a class of Lipschitz nonlinear systems with external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level. Finally, a numerical example is provided to verify the proposed design method.

Diagnosis of Linear Systems with Structured Uncertainties based on Guaranteed State Observation

  • Planchon, Philippe;Lunze, Jan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.306-319
    • /
    • 2008
  • Reaching fault tolerance in technological systems requires to detect malfunctions. This paper presents a diagnostic method that is robust with respect to unknown-but-bounded uncertainties of the dynamical model and the measurements. By using models of the faultless and the faulty behaviours, a state-set observer computes polyhedral sets from which the consistency of the models with the interval measurements is determined. The diagnostic result is proven to be complete, i.e., the set of faults obtained by the diagnostic algorithm includes the actual fault. The algorithm is illustrated by an application example.

Static Output Feedback Control Synthesis for Discrete-time T-S Fuzzy Systems

  • Dong, Jiuxiang;Yang, Guang-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.349-354
    • /
    • 2007
  • This paper considers the problem of designing static output feedback controllers for nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy models. Based on linear matrix inequality technique, a new method is developed for designing fuzzy stabilizing controllers via static output feedback. Furthermore, the result is also extended to $H_{\infty}$ control. Examples are given to illustrate the effectiveness of the proposed methods.

퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링 (Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods)

  • 지효선;구근모;이훈구;탁민제;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF

Efficient non-linear analysis and optimal design of biomechanical systems

  • Shojaei, I.;Kaveh, A.;Rahami, H.;Bazrgari, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권4호
    • /
    • pp.207-223
    • /
    • 2015
  • In this paper a method for simultaneous swift non-linear analysis and optimal design/posture of mechanical/biomechanical systems is presented. The method is developed to get advantages of iterations in non-linear analysis and/or generations in genetic algorithm (GA) for the purpose of efficient analysis within the optimal design/posture. The method is applicable for both size and geometry optimizations wherein material and geometry non-linearity are present. In addition to established mechanical systems, the method can solve biomechanical models of human musculoskeletal system. Optimization-based procedures are popular methods for resolving the redundancy at joints wherein the number of unknown muscle forces is far more than the number of equilibrium equations. These procedures involve optimization of a cost function(s) which is assumed to be consistent with the central nervous system's strategy when activating muscles to assure equilibrium. However, because of the complexity of biomechanical problems (i.e., due to non-linear biomaterial, large deformation, redundancy of the problem and so on) efficient analysis are required within optimization procedures as suggested in this paper.

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.