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Design of PD Observers in Descriptor Linear Systems

Ai-Guo Wu and Guang-Ren Duan

Abstract: A class of new observers in descriptor linear systems, proportional-derivative (PD)
observers, are proposed. A parametric design approach for such observers is proposed based on a
complete parametric solution to the generalized Sylvester matrix equation. The approach
provides complete parameterizations for all the observer gains, gives the parametric expression
for the corresponding left eigenvector matrix of the observer system matrix, realizes elimination
of impulsive behaviors, and guarantees the regularity of the observer system.
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1. INTRODUCTION

Descriptor linear systems appear in many fields,
such as power systems, electrical networks, social
economic systems, and so on, and therefore have been
dealt with intensively [1-4]. Parallel to the
conventional linear system theory, the problem of
designing observers for descriptor linear systems is
investigated by a number of scholars. In [4], the
design of full-order observers for descriptor linear
systems is considered. In [5], the design of reduced-
order observers for descriptor linear systems is
developed. While many approaches for designing
Luenberger observers for descriptor linear systems are
also investigated in [6]. From the classic control
theory, it is well known that the integral action is
useful to achieve steady-state accuracy. Based on such
ideas, recently, the PI observers for descriptor linear
systems have attracted the attention of many
researches [7,8]. In this paper, a new type of observers,
which is termed as proportional derivative observer, is
introduced. This observer includes the derivative of
the estimation error.

This paper is a revised version of [9]. In this note,
the type of proportional-derivative (PD) observers for
descriptor linear systems is proposed by introducing a
derivative term in full-order state observers. Based on
a complete parametric solution to a type of
generalized Sylvester matrix equations in [10], a
parametric design approach for the proposed PD
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observers is presented. The proposed method
guarantees the regularity of the observer system and
realizes the elimination of impulsive responses. In
terms of two parameter sets which represent the
degrees of the design freedom, i.e., the set of the finite

eigenvalues of the observer system {s;, i=1,2,---,n},
a group of parameter vectors {v;,g;,i=12,---,n},
parameterizations for all the gain matrices of the
observer system are established. The existence
conditions for the proposed type of PD observers are
given by some constraints on these design parameters.
The proposed method utilizes the right coprime
factorizations of the original system. The proposed
approach offers all the design degrees of freedom
which can be utilized to achieve additional various
system performances. In addition, we show that the
proposed PD observer possesses separation property,
thus the type of PD observers is qualified as an
effective observer.

2. PROBLEM FORMULATION
Consider the following descriptor linear system

Ex(t) = Ax(t) + Bu(r),
¥,()=Cpx(0), (1)
Ya(t) = Cyx(1),

where xeR", ueR", y,eR™, and y, eR' are

respectively the state vector, the input vector, the
output vector and the derivative output vector. F,

AeR™, BeR"™, CpeRmx", and Cy eRM™”

are the known real matrices. Let
T
c=[c] ci. @)

for the system (1), and assume that the following
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assumptions are met;:
Assumption Al: Matrix C is of full-row rank;
Assumption A2: The matrix triple (£, 4, C) is
R-observable, that is, for any s<C,

sE— A4
ranl{ :! =n; 3)
C
Assumption A3:
| | (4)
ra =n
c, ™"

For system (1), a PD observer in the following form is
introduced

EX = A% +Bu+ L, (y, ~ C,%) +L;(y; — C4%), (5)

where xcR” is the estimated state vector, and
L,eR™™ and L;eR™ are the observer gains.
Specifically, the matrices L, and L; are called
proportional and derivative gains, respectively.

Definition 1: The system (5) is called a PD
observer for the system (1), if for any initial
conditions x(0) and x(0)and any input u(¢), the
following relation holds:

lim (x(¢) — £(2)) = 0. (6)

Let e(r)=%(t)— x(¢t), then combining (1) and (5)

gives

Eé=4,e @)
with

E,=E+L;Cy, A4, =A4A-L,C,. 8

Thus the system (5) is a PD observer for the system
(1) if and only if the matrix pair (E,,A,) is Hurwitz
stable. Since nondefective matrix pairs have lower
eigenvalue sensitivities than defective ones, we
require that the Jordan form of the matrix pair

(E,,A,) is diagonal. Furthermore, we demand that

the matrix pair (E,,A4,) has n finite eigenvalues,

which ensure that the observer system (5) is regular,
then elimination of all possible initial time impulsive
responses is realized in system (5). Based on the
above reasoning, we can state our problem of
designing PD observers for descriptor linear system
(1) as follows:

Problem PDO: Given matrices E,4eR™",
BeR™, (C,eR™", and C;eR™" satisfying

Assumptions Al, A2, and A3, find the complete
parameterizetions for the observer gain matrices L,
and L, such that the matrix pair (£,,4,) in (8)

satisfying the following requirements:
1) it is Hurwitz stable and nondefective;
2) it is regular and possessesn finite eigenvalues.

3. SOLUTION TO PROBLEM PDO

In this section, we will provide a general solution to
Problem PDO proposed in Section 2.

3.1. Some basic relations
Since the matrix pair (E,,A4,) is required to be
nondefective, it has a diagonal Jordan form

A =diag(s},59,°*7,8,), ©)

where s;,i=1,2,---,n, are not necessary distinct.
Obviously, s;,i=1,2,---,n,
of (E

o

are the finite eigenvalues
,4,). To ensure that the matrix pair (£,,4,)

is Hurwitz stable and real, the following constraint is
satisfied:

Constraint 1: {si,i:1,2,'--,n} is self-conjugate
and Res; <0, i=1, 2,--, n

Denote the left eigenvector associated with the
finite eigenvalue s; of (E,,4,) by t;,€C", i=l,
2,---,n. Construct the left eigenvector matrix by

T=[t] t2 ot tn], (10)
then by definition we have rankT =#, and
TT(4-L,C,)=ATT(E + LyCp), (11)

which can be written equivalently as

7 4-[17L, ATTL;| C=AT"E. (12)
Let
A —[TTLP ATTLdJ , (13)
(12) can be equivalently written as
TT4+2ZTC=ATTE. (14)

3.2. Solution to matrices T and Z
Taking transpose of (14) gives

A'T+CTZ =ETTA, (15)

which is the generalized Sylvester matrix equation
investigated in [10]. According to the result in [10],
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the following lemma is obtained.

Lemma 1: Under Assumption A2, all the matrices
T and Z satisfying (14) are represented by the
following parametric expressions

T=[N(s)g N(s2)g2
Z=[D(s)g D(sy)g,

N(s»)g,),  (16)
D(s))gn), (17

where g, eC™! i=1,2,---,n, are a group of
arbitrary parameter vectors and N(s)€ R"X(m”)[s]

and D(s)e ROy are the right coprime

polynomial matrices satisfying the following right
coprime factorization:

ET - ATy T = N(s)D ' (s). (18)

To ensure that the gain matrices L, and L, are

both real, the following constraint must be satisfied:
Constraint C2: g; =g, if s;=75.
Having the parameterization of the matrix T,
condition rankT =»n can be converted into the

following constraint:
Constraint C3:

det[N(s))g; N(s2)g; N(s,)g,]#0.

3.3. Solution to matrices L, and L

Partition the matrix Z in (13) into

z
Z:[Zp}zp eC™",Z; € CM. (19)
d

Then we have
T; _ T
'L, =2}, (20)
AT L;=-Z). 1)

From Constraints C1 and C2, it follows that the
matrices A and T are both nonsingular, the observer
gain matrices L, and L, are obtained as

L,= -r7"z], (22)
L,=-T A"zl (23)

For consideration of regularity of the system (7), the
following lemma is given.

Lemma 2: Given the matrices E, 4 R™", Be

R™ C;eR™", and C; € R>” suppose that the
observer system (7) possesses n eigenvalues, then
the matrix pair (E,,4,) isregular if and only if

det(E + L;C;) #0. 24)

Proof: It follows from (11) that T~ A, =ATTE,.

Due to the above relation and (8), it is easily obtained
that

TT(sE,— A,)=(sT"E, - ATTE,)

25)
=(sI - NTT (E+L,Cy).

Thus we have

det T det(sE, — 4,)

(26)
=det(s — A)det T det(E + L,Cy),

Since det TT is non-zero in view of Constraint C3,

this it is easily known that det(sE, —A4,) is not

identically zero if and only if (24) is satisfied since

det(sI — A) is not identically zero. 0
In view of (23), we have

ATT(E+1,C)=ATTE-Z]C,. (27)

Since AT is nonsingular, from the above it is
obvious that (24) is equivalent to

det(ATTE-Z5C,) #0. (28)

Partition the polynomial matrix D(s) satisfying (18)
into the following form:

D, (s)

R(m+l)><(m+])
D, (s):!’ Dy(s)e [s], (29)

D(s)= [

then Z, can be expressed by

Zg=[Da(s)&1 Dy(s7)2> Dy(s,)g,]-(30)
With the above preparation, the regularity condition
(24) is converted into the following constraint on the
design parameters s;,g;,i=1,2,---,n:

Constraint C4: det[h, 7y h,]#0 with
b = (sz‘ETN(Si)_Cng(Si))gi'

Summarizing the results in the above subsections,
we have the following theorem for solution to
Problem PDO.

Theorem 1: Given the system (1) satisfying the
Assumptions Al, A2 and A3, Problem PDO has a
solution if and only if there exist a group of
parameter s;,g;,i=1,2,---,n, satisfying Constraints
C1-C4. If such parameters exist, then the observer
gain matrices L, and L, are given by (22) and (23)
through (16)-(19).

For the proposed parametric approach for solving
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Problem PDO, we provide the following remarks.

Remark . 1: A method to solve the coprime
factorization (18) has been given in [10].

Remark 2: It has been shown that under the
condition of Assumption A3, there always exists a real
matrix L, satisfying (24). Moreover, all the matrices
L, satisfying (24) form a Zariski open set, thus
Constraint C4 can be neglected if only one special
solution is of interest.

Remark 3: The presented approach can provide all
the degrees of design freedom, which is represented
by the free parameters s;,g;,i=1,2,---,n. They can

be further utilized to achieve additional various
desired system specifications and performances such
as disturbance decoupling, LTR/LQR and robustness
against parameter uncertainty.

4. SEPARATION PROPERTY

4.1. The closed-loop system
The PD observer-based state plus output derivative
feedback

{E)e: A% +Bu+Ly(y, =Cpf) +Ly(va = Ca®) 3.

u=Kx- Kdyd +v,
with ve R" being an external input, is applied to the

system (1), the closed-loop system is obtained as

{chcc = A.x, +B,v 32)

y=C.x,

with
_ X E = E+BKdCd 0
Y= il T BK,C,-L,0, E4LC, |

) { A BK }
¢ |L,C, A-L,C,+BK

B c, 0
BC = s CC’ = >
B SCd 0

where s isthe Laplace operator.

4.2. Separation property

Theorem 2: Given system (1), the closed-loop
transfer function under the PD observer-based state
plus output derivative feedback (31) is equal to the
one under state feedback plus output derivative
feedback control law

u=Kx—Kdyd + V. (33)

Proof: The closed system of (1) under control law
(33)is

(E + BK;C,)% = (A+ BK)x + Bv,

whose transfer function is easily found to be

o 0
LCJ [s(E+BK,C,)-(A+BK)| B. (34)

[0 [t 0 35
o=\ 1, P o) (33

then we have

E+BK,C; 0
QE.P= ,
0 E,
e A+BK BK 36)
04.P= 0 4,

B c, 0
oB.=|" |, c.p= .
0 SCd 0

Therefore, the closed-loop system (32) is restricted
system equivalent to the following system:

E+BK,C, 0] [4+BK BK]| [B] [C, O
0 E, | 0 4, | [0] |sc; 0

under transformation (P,Q) with P and @ being

defined by (35). By some simple computations, it is
easily found that the transfer function of the system
(32) is equal to the expression in (34) which is the
transfer function under the state plus output derivative
feedback (33). In view of the fact that two restricted
equivalent systems have the same transfer functions,
the conclusion is true. O

Based on the proof of the above theorem, it is easily
seen that the proposed PD observer satisfies the
separation principle, which is given by the following
theorem.

Theorem 3: Given the system (1), the eigenvalues
of the closed-loop system under the PD observer-
based state plus output derivative feedback (31) are
the union of those of the PD observer and the state
plus derivative output feedback.

Proof: It follows from (36) that the closed-loop
system matrix pair (E,,A4,) is restricted system

equivalent to the following matrix pair under
transformation (P,Q) with P and Q being defined

by (36):



Design of PD Observers in Descriptor Linear Systems 97

E+BK,C; © A+BK BK
0 E | 0 A )

o 14

therefore there holds

o(E,, 4,)=0c(E

o

,A4,)Vo(E+BK,;C,;, A+ BK).

Thus the conclusion is proved. O

From the above two theorems, the proposed PD
observer satisfies the essential features of observers
and hence is qualified as an effective observer.

5. AN ILLUSTRATIVE EXAMPLE

Consider a system in the form of (1) with the
following parameters

' | |

(=]

txy

Il
Pk <o (e} i
S OO = O
S O = O O
S O O O O
oS = O O O

h

Il
o O = O
S O = O O
S OO O M~
S = O = O

—_—0 O O

L g
01 000 00010
C = N Cd = .
Plo o1 00 1 0000
For this system, n=5, m=1[=2. Itis easy to verify
that the Assumptions Al, A2 and A3 are met. In the
following, we will design a PD observer in the form
of (5) for this system.

Step 1: Solving the right coprime factorization (18)
gives

[ony

(1 0 0 0 0 s -1 0
oo 1 0 s 0
N(s)=10 0 1 0|, D(s)= 0 -1 0 -1
00 01 )

0 0 0 s s -1 0 s

Step 2: For simplicity, we restrict the eigenvalues
s, i=1, 2, 3, 4, 5, of the observer system to be
negative real, thus Constraint C1 is automatically
satisfiled. In this case, the parameter vectors
g, i=1, 2,3, 4, 5, are be restricted to be real,

Constraint C2 is therefore met. Denote

T .
gi:[gil g2 83 gi4] ,1=12,3,4,5,

then from (16) and (17), Constraints C3 and C4 are
respectively derived as

de‘{ 81 &2 &3 84 &8s }to,
51814 52824 53834 S4844 55854

(&2 + 91814 82 + 52824 g52 + 55854 |
51812 52822 $5852
det| 51813 52823 ss8s3 | #0.
g2181a  ExnT8u 852 T 854
51814 52824 §5854 |

Step 3: Specially, we choose the parameters satisfying
the foregoing constraints as

s; =i, 1=1,2,3,4,5;

0 0 1 1 1

1 0 0 1 0
g1=0,g2=1,g3=0,g4:1,g5=1-

1 1 1 0 0

Step 4: Based on the parameters obtained in Step 3,
we obtain

r -

0 0 1 11
1 0 0 10
T={0 1 0 1 1},
1 1 1 00
-1 2 -3 0 0

-1 -1 0 -5 -1
Z = 3
p 0 -2 -1 -5 -6
-2 -1 -1 -1 0
Zd = .
0O 4 6 -5 -5
Step 5: According to (22) and (23), the observer gain
matrices are

i 107 [_13 _>s
-1 5 36 41
_ _1 _1
4 1 1 1
_ g 13 1
Lp= = 5 la=| 5% 3
-5 8 95 _s
3 36 4
-2 2 _8 _3
L 34 ) 2

6. CONCLUSION

A type of PD observers for descriptor linear
systems are proposed. Based on a general parametric
solution to a type of generalized Sylvester matrix
equations, a parametric approach to the design of the
proposed PD observers is presented. The proposed
approach offers all the degrees of design freedom
which can be utilized to achieve additional various
system specifications. In addition, it is shown that the
proposed PD observer possesses separation property
which is the essential feature of observers. Therefore,
it is qualified as an effective observer.
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