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Diagnosis of Linear Systems with Structured Uncertainties based on
Guaranteed State Observation

Philippe Planchon and Jan Lunze

Abstract: Reaching fault tolerance in technological systems requires to detect malfunctions. This
paper presents a diagnostic method that is robust with respect to unknown-but-bounded
uncertainties of the dynamical model and the measurements. By using models of the faultless and
the faulty behaviours, a state-set observer computes polyhedral sets from which the consistency
of the models with the interval measurements is determined. The diagnostic result is proven to be
complete, i.e., the set of faults obtained by the diagnostic algorithm includes the actual fault. The

algorithm is illustrated by an application example.
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1. INTRODUCTION

1.1. Diagnosis

Fault diagnosis aims at determining whether a fault
is affecting a dynamical process (Fig. 1). Model-based
diagnostic methods compare the actual behaviour of
the process represented by measurement sequences of
the inputs and the outputs with the expected behaviour
that is given by a mathematical model.

As the model and the measurements used for
diagnostic purposes are usually subject to uncertain-
ties, the diagnoses have to be robust with respect to
these uncertainties. The challenge is to determine
which faults are affecting the process with an
acceptable ratio of false alarms to missed alarms.
False alarms happen when a fault is indicated that did
not occur, missed alarms when a fault occurs without
being detected.

In this paper the process is represented in each fault
situation by a linear state-space model whose
parameters may have unknown-but-bounded uncer-
tainties. Furthermore, the measurements may also be
subject to an unknown-but-bounded error. Under these
conditions, a complete diagnostic result is sought,
meaning that the diagnosis yields a set which includes
all faults, for which the model and the measurement
sequences match (within the given uncertainty
assumption). Such model and measurements are said
to be consistent.
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This paper proposes to verify this consistency by
pursuing set-membership observations. It is shown
that, in order to attain a completeness of the diagnostic
result, the set-observers must compute over-
approximations of the set of possible current states.
The observer is then said to be guaranteed, i.e., it
describes a set of states which includes the actual state
of the system. The guaranteed observation results are
then interpreted in the framework of consistency-
based diagnosis, yielding the desired completeness.

1.2. Literature overview

The monographs [1-3] present thorough surveys
about existing diagnostic methods. In this paper, an
observer-based approach to diagnosis is described, in
which uncertainties are explicitly taken into account,
both in the parameters used for the modeling and in
the input-output measurement signals.

As opposed to numerous studies, the present
approach does not rely on a stochastic consideration
of uncertainties - in which these have a probability
distribution - but merely considers the uncertainties to
lie within given bounds (deterministic uncertainties).
While it is possible to deal with such unknown-but-
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bounded uncertainties using approaches from optimal
control theory, e.g., with H, or He filtering
techniques [4,5], the present solution uses a set-
membership approach. The advantage of the method
described in this paper over these approaches is the
fact that no fault can be overseen and a complete
diagnostic result is obtained.

Using an observer-based diagnosis, the method
relies on two main steps. First, the state-observation is
solved in a set-theoretic sense for each model of the
possible process behaviours. Second, the results of
these set-observers are evaluated into a diagnostic
result. In order to achieve completeness in an accept-
able computing time, the set-valued observations must
be guaranteed, i.e., they over-approximate the true
result.

Several such guaranteed observers have been de-
veloped in the past for linear discrete-time state-space
models. These distinguish themselves mainly in the
type of geometry used: ellipsoids [6,7], polytopes
[8,9] or intervals [10,11]. Fewer methods are known
which also consider model uncertainty {12-14]. While
these set-theoretic observers may appear formally
very different from standard stochastic observers,
their algorithmic similarity with the extended Kalman
filter 1s interestingly discussed in [15].

Much research in this field has also been conducted
using approaches based on interval arithmetic, [11,16-
18]. The achieved algorithms for state observation (or
parameter estimation) is generally intrinsically
different from the above mentioned works.
Furthermore, the models used to describe the process
are often either static or based on an input to output
relationship, not on state-space formalism. An original
method combining residual generation and parameter
estimation using intervals is found in [19], but it does
not pursue completeness. An unknown-input observer
may also be used to consider the model uncertainty,
e.g., in [20] using parallelotopes and in [21] using
ellipsoids. This leads of course 1o different
observation algorithms and, most of all, requires a
different modeling. Further set-theoretical diagnostic
methods that consider model uncertainties exist based
on frequency-domain models, [22,23].

This paper describes a diagnosis for processes
subject to unknown-but-bounded measurement and
parameter uncertainties based on polyhedral-set
observation. To the authors’ knowledge, it presents a
novel approach in considering (structured) parameter
uncertainties and in not requiring to “guess” an
bounded initial state-set. Furthermore, the paper
emphasises the causality between the aim to obtain
complete diagnosis and the necessity to solve the set-
observation task using over-approximations. The
reason to use over-approximation (and not any other
kind of approximation) is often unclear in the
literature for similar diagnostic methods.

1.3. Assumptions

Throughout this paper the following assumptions
are made:

Assumption 1: A finite number of faults may attect
the process. The set of all faults is denoted by

F={fy,fi>---»fy}. By convention, the faultless
behaviour is represented by f, and the faulty
behaviours by f;

:, 1>0. The fault truly occurring in

the process is denoted by f~, such that at every time
instant 3/ €{0,...,N}, /" =f;.

Assumption 2: The set F is known and the
process is represented for all faults by a linear state-
space model (closed-world assumption, cf. [24]).
These models may include unknown-but-bounded
parameter uncertainfies.

Assumption 3: A constant fault f~ €[ affects the
process during the entire time horizon of the diagnosis,
hence (k)= f" (time-invariant fault). Extensions

to time-varying faults are possible but not described in
this paper.

Assumption 4: At all time instances & an upper
bound on the measurement error is available, such that

two vectors e, (k) and e, (k) are known for which
| u’ (k) — (k) < e, (k) and |y"(k)-y(k)[< e, (k)

hold, with #° the true input and & the measured

input and with y° and yp the true and measured
outputs.

While Assumption 1 may seem very restrictive, it is
in general necessary to have a model of each fault
behaviour which must be identified. However,
unknown faults may still be successfully detected if
the generated behaviour sufficiently differs from the
faultless one. This comment also holds true for faults
which vary during the time horizon of the diagnosis,
as shown by an example in [25].

Assumption 4 is well-suited to consider offsets (e.g.,
induced from improper calibration). The time
dependence may be used, for example, when a
sensor’s precision depends on other values of its
environment (e.g., a rotational speed sensor with poor
precision in its lower RPM range). As the considered

uncertainties e, (k) and e (k) do not assume the

measurement errors to have a zero mean value,
perturbations such as noise must be filtered-out before
applying the presented diagnostic method. Similarly,
there is no handling of outliers such that these must be
removed from the signals. Alternatively if a signal
processing method is known to detect outliers and if
these only occur in the output signals of the system,
the observation algorithm presented here (Algorithm
1) can be made to skip the corresponding measure-
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ment step, using only the predicted set. This, of course,
worsens the observation’s accuracy (and hence the
diagnostic accuracy) but would not impair with the
completeness property. In practice, the values of the

error bounds e, (k) and e, (k) can be found in the

technical specification of the sensors and actuators, or
can be determined empirically. In the latter case, it
may be difficult to assure that Assumption 4 always
holds true.

2. DIAGNOSTIC METHOD

2.1. Measurements and process model
2.1.1 Measurements

At each time instant %, the real-valued measure-
ments u(k) and y(k) are converted into two sets

U(k) and V(k) using the two time-varying upper
bounds e, (k) and e, (k) of the measurement error.

The sequence of inputs
U(0...k) = (u(0),...,u(k))

yields, at each time &, the set U(k) of input values
that may have occurred

Uk):={ueR"||u—uk)|<e,(k)} (D

and for the time horizon 0...k the sequence
UO...k)=U0),....UK)).

The fact that a sequence U(0...k) of real-valued

inputs belongs to the sequence U(0...k) of set-
valued inputs is described by the notation

U(0...k)e U(Q...k)

_ Q)
s uk)elUk), 0<k<k.

Similarly, the output measurement sequence results in
sets of output values

Y(k):={y eR" ||y - y(k)|<e,(k)}. 3)

By construction the sets (k) and ) (k) are

hyper-cubes and, therefore, describe intervals in each
dimension of the input and output spaces. By
Assumption 4, these sets are guaranteed to contain the

true input # (k) and the true output y°(k):
u (k)eld(k) and y°(k)eY(k).

Hence, by treating all vectors within these sets, the
state observation and thus the subsequent diagnosis
are intrinsically robust against the considered error.

2.1.2 Process models
A linear state-space model M, with time-varying

parameter uncertainties is associated to each fault
felF:

x(k +1) = A, (p(k))x(k) + B yu(k) 4)
y(k) = C px(k)+ D yu(k) (5)
pk)ePc R, ©6)

The state, input and output vectors are xeR",

ucR” or yeR’, respectively, and the matrices
Ar, By, €, and D, are of corresponding sizes.

The model uncertainties are structured, i.e., the
dependency of the system matrix upon the uncertain
parameters can be represented in the form

N

P
Ar(p)=Aso+) (0 Ary). (7)
i1

The interval set P in which the model parameter

p= (le-spr ) varies is defined by

P:z{peRNp | pMit < p. < pmax I<i<N,}.

For simplicity and brevity, this paper only considers
uncertainties in the system matrix A,. However, the

method used to take into account these uncertainties
can be transposed in the exact same way to deal with

uncertainties in the input matrix B, (cf. Section 4).
Uncertainties in the output matrix C,, however,

cannot be considered as is done with 4, and By
Fortunately there are few applications which truly
require such consideration (the output y 1is often a

subset of the state x). Very few methods are known
from the authors which do consider such uncertainties

(e.g., [12]).
Definition 1 (Input-to-output operator): The

operator v, , describing the achievable output of

the model M r for a given initial state x(0) and a

sequence of inputs U(0...k) is called the input-to-

output operator.
If the parameters are known and time-invariant
(Vk, p(k)=0), the input-to-output operator is real-

valued and has a well-known form in the control
community:

v, 7 (x(0),U(0...k)) = y(k)

_ P _
-C, (Aji,ox(()) + > A5 B u(j - 1)) + D u(k)
j=1
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For a model with uncertain parameters in P R"? ,
the operator is set-valued and described by

¥y, (x(0),U(0...k)):=D (k)

- HF {Crv, rp(x(0),U(0...k))+ D ru(k)},

where v, rp is the input-to-state operator of the

exact model corresponding to a specific sequence of
parameters P =P(0...k —1)=(p(0),..., p(k —1)) e

P*. An analytical expression of the

“ﬁnj:P
operator is found in [26] to be

Ve 7 p (X0, U(0...k —1))

k-1 k (k-1
:[ [T14,¢ p(k))] X, + Z[H Ay (p(q))}Bfu(j - 1),
k=0 j=I

q=J

when the following matrix product definitions are
used, for k' >k:

.
[147(p(@):=A4,(pk')

qg=k
Ap(p(k'=1)-...- A, (p(k))
and for k'=k-1:

k-1
[14/(p(g) =1
qg=k

2.2. Consistency-based diagnosis
The main idea of the diagnostic method proposed in
this paper consists in testing the consistency of the

models M, and the measured set-valued input and

output sequences. Consistency means that there exists
an initial state as well as real-valued input and output
sequences within the given set-valued sequences such
that for this initial state and this input sequence the
model yields this output sequence. The notion of
consistency can be formalised using the input-to-state
operator as follows.

Definition 2 (Model consistency): The model
M, is said to be consistent with a sequence of

measurements U(0...k) and Y(0...k) if there
exists an initial state x(0) such that, for a model
with exact parameters:

Y(k)=vy, (x(0),U(0...k)), Vke{0,...,k},
and for a model with uncertain parameters:

Y(k)e v, (x(0,U(0...k), Vke{0,.. k. (8)

Using the symbol “F”, the model consistency is
represented as follows:

MEU...k),Y(0...k)).

The definition of model consistency is extended to
consider the sequence of set-valued input and output
sets:

M EUO...5),Y(0...k))

if 30(0...k)el(0...k) and I¥(0...k)e V(0...k)
such that Mf|=(17(0...l;),17(0...1;)).

The consistency of a model M, with a sequence

of inputs and outputs (either real or set-valued)
indicates that a process behaves like the model M ..

Hence, this implies that the fault f may have

occurred and leads to the following definition of the
set of fault candidates.

Definition 3 (Fault candidates): The set of fault
candidates is defined by

F*(k)=F*(k|0...k)

_ _ 9
={f eF|MEMUO...k),Y(0...k))}
Consequently, a fault candidate describes a fault
situation in which the measured input and output
sequences are consistent with the model of this fault

situation. Hence, the set of fault candidates F (1? )

represents the best achievable diagnostic result’. With
these notations and definitions the diagnostic problem
can be formally described as follows:

Diagnostic problem:

Given:
« the sequence of set-valued inputs and outputs

UO...k) and Y(0...k).
« the process model M., forall faults f €.

Find:
o the set of fault candidates, Eq. (9).
An obvious consequence of the assumptions
described earlier 1s given in the following proposition:
Proposition 1: The true fault is a fault candidate:

£ eF k), Yk<k.

As mentioned in the introduction, the aim of the
presented diagnosis is to be complete. Using the above
notation a formal definition of completeness can now
be given:

Definition 4 (Complete diagnosis): A diagnosis is
said to be complete if its result - described by a set

' The “best” means that no method to verify consistency
may lead to a finer diagnosis than F* while preserving
completeness and using the same information (models and
measurement sets).
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with uncertainty
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Fig. 2. Robust diagnosis using guaranteed observa-
tion.

JF of faults - contains all fault candidates:
Fk)oF" k), Vk<k.

Following Proposition 1, the result of a complete
diagnosis always contains the true fault. Hence, the
complete diagnosis is also said to be guaranteed,
meaning it cannot cause missed alarms.

2.3. Overview of the proposed diagnostic method

To solve the diagnostic problem, a method to check
the consistency of a model with sequences of input
and output sets is needed. Based on Definition 2, the
consistency is proven if an initial state x(0) is found

which verifies (8). Therefore, by solving a state-
observation problem for a model M 5 and a

sequence of input and output data, the (in)consistency
of the model with the data can be checked.

Because of the set-valued nature of the data, it is
proposed to use a set-membership state-observation to
verify the consistencies. In the general case, such an

observer yields a set X(k|0...k) representing the
states x(k) possibly reached by the system, given
the measurement horizon of the sequences U(0...k)
and )(0...k).* Verifying the consistency then sim-

plifies to a verification whether X(k|0...k) is an

empty set or not. More specifically, as the diagnostic
result should be complete, a guaranteed state-
observation is considered: if no exact representation
of the sets X is possible, these are then to be over-
approximated. This implies that only inconsistencies
can be proven but, most of all, this assures that no

> Even when considering a known model together with
real-valued measurement sequences, the result of such an
observer can be a sef of states.

fault is wrongly excluded from the diagnostic result,
hence its completeness.

In the following section, a diagnostic algorithm is
derived which is shown to result in a complete and
guaranteed diagnosis. Furthermore, the diagnosis is
robust since the completeness is achieved for an
explicit consideration of modeling and measurement
errors. The algorithm is based on two consecutive
steps (Fig. 2): |
1. a guaranteed state observation of all models

M and f e[ (see Sections 3 and 4).

2. the consistency check of all models (see Section 5).

3. GUARANTEED STATE-SET
OBSERVATION

A set-observer constructs the set of all states which
may be reached by a process described by model

M, and for the measured sequences of inputs

U...k) and outputs V(0...k). The resulting set
of states is said to be minimal - and is denoted by
X*(k|0...k) -if it contains all the reachable states,

and only these states. In the general case, the minimal
state-set corresponding to a model M, and a set-

valued sequence of inputs U(0...k) and of outputs
Y(0...k) is given by:

X' (k10...k):={xeR" |x:=y, ; p(x(0),U(0...k)),

PePV? x(0)e R, U(0...k) e U(...k),
for which v, ¢(x(0),U(0...k)) e Y(k),0<k <k}.

Computing X is a very complex task which can be
numerically computed only for special cases. In the

case of a model with no feedthrough (D, =0), the

above expression 1s equivalently obtained using a
recursion over the given time-horizon as follows:

X*(01]0...0):={xR" [(Crx) e(0)}, (10)
and for 0<k<k,

X (k|0...k):={xeR" |x:=A,(p)x + B,

xeX " (k-110..k-1), peP acUlk-1), (11)

for which (C yx) € Y(k)}.

This operation can be further decomposed into three
independent operations, which form the basis for most
set-membership observation algorithms found in the
literature, e.g., [7,8]. The recursion then becomes:

X (k| 0...k) =" (k) N (K), (12)
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with A7 (k) and X (k) defined as

X,(k)={xeR"” | x=A;(p)x+Bit,a cl(k ~1),
xeX (k-110...k-1), peP) (13)
X (k)= {x eR" | (C;x)eV(k)}. (14)

Even in this form, the minimal state-sets are difficult
to compute in practice. Indeed, for linear models with
uncertainties, the one-step prediction described by

* .
X » does not even result in a convex set. Therefore,

research has focused not on computing X but an

under-approximation or over-approximations of these
minimal sets, [10].

As a complete diagnosis is desired based on the set-
observation results, an over-approximation of these
sets 1s chosen as derived using the following

algorithm (The operators F, ,, Fp, and F,

used in the algorithm are explained afterward). The

computation steps necessary within one recursion of

such a guaranteed observer are illustrated for a two-

dimensional system in Fig. 3. An implementation of

this algorithm using polyhedra is given in Section 4.
Algorithm 1 (Guaranteed Observation):

GIVEN:

* amodel M, asin(4)-(6)

« a sequence of input and output sets {(0...k) and

Y(0...k)
INITIALISATION: (k :=0)

X p(0)=F; ,,(V(0), U(0))

A le
Xfp 4
(a) Predicted set (b) Measured set
A X1 b I
)
(c) Corrected set (d) Approximated set

Fig. 3. Illustration of the guaranteed observer using
polyhedra.

LooP: (until k =k )
X r(k=1) >& (k)
1. Compute the predicted set
Xf,p: Ff,P(Xf(k —1),2/{(]( _1))
2. Compute the measured set
3. Compute the corrected set

Xf,ﬁ:/'\ff,p me’m

4. Compute the approximated set
X p)=Fo(X )2 X s,
RESULT: A sequence of current-state sets

X (k)=X ¢ (k|0...k), 0<k<k.

In Step 1, the operator F , is introduced as an

over-approximation of the one-step prediction from
(13). It encloses, the possibly non-convex set X ;

into a convex set:

Fy (& (e =DUKk=1) 2
(xeR" |x=A,(p)%+B i, (15)
ReX (k-1 aclU(k-1), peP}.

In Step 2, the operator F,, yields the set X "

of states that are consistent with the measurements. Its
representation is extended from (14) for models with
feedthrough:

Fr wD(R)UK) = {x <R

' R (16)
(C x+ D ity e Y(K), it Uk)}.

In Step 4, an operator F_ 1s used to keep the

mathematical representation of the sets - and hence
the numerical burden of the aigorithm - equally
complex over time. For example, using ellipsoidal sets,
the corrected set (an intersection of two ellipsoids)
must be over-approximated to an ellipsoid to make the
recursion possible. Using polyhedral sets, the
corrected set remains a polyhedron but of increased
complexity, such that a new and simpler polyhedron 1s
sought. This step 1s decisive in determining either how
fast or how precise the observation runs, which are
two contradictory aims.
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Theorem 1 (Complete Observation): The sets & ;
reconstructed by Algorithm 1 verify

X (k) 2X%(k 10...k).

Proof 1: The theorem is a direct consequence of the
structure of the algorithm which is an implementation
of the recursion from (12)-(14), using solely over-
approximations. Hence, the proof is given here by
recursion. For simplicity a model with no feedthrough
is considered, but the result is true in general as shown
in [27].

The verification for k£ =0 is trivial by comparison
of (10) with the initialisation of the Algorithm 1 using
(16).

It 1s now assumed that the theorem’s result holds
true at time k£ —1. Consequently, the right hand-side

of (15) is an over-approximation of A", from (13)
and, therefore, sois X fp computed in the Step 1.

The set X ,, obtained within the algorithm is

identical to X, from (14). Hence, the intersection
described in Step 3 remains an over-approximation of
X*(k10...k), and so is the set X #(k) computed in

Step 4. Therefore, X (k)X (k[0...k) holds,

which proves the theorem.

4. IMPLEMENTATION OF THE OBSERVER
FOR POLYHEDRAL SETS

This section shows how the observation algorithm
can be implemented using polyhedral state sets. A

polyhedral set X< R” describes a convex region
delimited by s linear inequalities. Let m, be the

rows of a matrix M € R¥" (the faces of the set) and
g; the elements of a vector geR’. The facial
description of a polyhedron is given by

X={xeR" | Mx<gq)}. (17)

4.1. Predicted set
The computation of the predicted set X', |

=Fp (X,U) is the most complex task of the

algorithm when considering model uncertainties. In
the following, a conceptual description of the solution
is given. The reader can find a detailed proof of the
result in [27, Prop. 3.4].

In Fig. 4 the approach to compute the prediction
step 1s graphically illustrated. The polyhedral sets thus
obtained are compared to the prediction of a mesh of
vectors spread over X . If no parameter uncertainties

13+ Mj'(p)

10
x2

b3 i 1 i 13 i
-20 -15 it -5 ] g
xl

(a) Exact model case (p = 0). The predicted polyhe-
dron is minimal.

14

13} Mf(P)

2r

1

xl

(b) Model with uncertainty (p €P). The predicted
polyhedron is complete.

Fig. 4. Predicted set for models without and with
uncertainty.

are considered ( p =0 in Fig. 4(a)), the prediction set
can be exactly represented by a polyhedron, which
faces are given by (MA},O).3 If parameter uncer-

tainties are considered ( peP in Fig. 4(b)), the

minimal predicted set represented by the mesh of
vectors 1s not convex. The idea pursued to solve the
prediction, is to enclose this non-convex set into a
polyhedra, using the faces obtained if no parameter
uncertainties existed. In practice, this is pertinent if
one assumes that most of the model information is

“contained” in A,, while the uncertainty-driven

information ( 4, ;, j >0) is of smaller magnitude.

Therefrom, the predicted set is described by

? Actually, if the system is subject to an uncertain input
(e, #0), a further set of faces must be considered to

describe the minimal set. These result from a Fourier-
Motzkin elimination, see [27,28]. However, it is possible
not to consider these additional faces, which further over-
approximates the set.
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X ,={xeR"|MA \x<h) (18)
with, forall ie{l,..., s},

. T 4
hf =g + I;IJIEE}/){((mZ- Af’oBfu)

N

P .

+ Z max[p"" mi}rg(miT A‘}}OA 7.%);
=1 Xe

M max(m! A7 A, x), 19
P xeé’t’( i Y00, ) ( )

max min(m! A7 A, x),
pj min(m; Ay oAy, ;x)

P max(m] A7\ A, ;x)]

xeX

The explanation of this result is given here for an
autonomous system (#=0). Having imposed the

faces of the sought polyhedron (18), one solely needs
to determine an appropriate value for A. This value
must assure an inclusion of the minimal predicted set,

i.e., it must enclose all possible vectors x=A4,(p)x,

VpelP and VxeX. Hence, for all i={l,...,s},
let

* -1 5 -1
h; == max (_MAf,Ox)=maﬁ>§(MAf,0Af(p)x)

peP pe
)%EXf,p xeX
Np
-1
= msﬁig MAf’O (Af,ox + z (pj Af,j x)).
ge)c’ J=1

This optimisation cannot be easily solved, but an
overapproximation of the solution is derived using the
expansion rule max{(a + b) < (max(a)+ max(b)), such

that:

W <h =max(MA;\ A, x
i i xeX( £,021£.0 )

N
p
-1
+Z( . max (p]-MAf,OAf,jx)).
j=1 Py <pispit
xeX

The consideration of an input signal does not change
the above approximation concept, since the expan-
sion of the max-operator can be done in the same way.

The first term is exactly ¢, as defined in (17) and
each summand in the second term can be expanded by
further over approximation, resulting in (19).

Using this approach, it is then possible to compute
an over-approximation of (13), without having to

explicitly compute the product A,(p)x, Vxed,

VpeP. Furthermore, uncertainties in the input

matrix may be considered in the exact same way,
using a structural decomposition of the term

4.2. Measured set
The measured set X, =F,, (Y, U) can always

be described using polyhedra, since no parameter
uncertainties occur in (5). It is given by

X' = (xeR" | Nx<h}

C
with N::{ gileRz”X” and the vector h=(h,
S

oy ) € R¥ defined as

. T
o=y - min(dy ;u),

min

Byps = —=(y"" —max(d f ;u)
uciA

for i=1,...,» andwith d}; the i-throwof D;.

4.3. Corrected set
The computation of the corrected set X', .=

X, ,NX(,, is straightforward: using the facial

description of the polyhedra, the intersection is
obtained by appending all inequalities of one set to
another. (This is not an efficient implementation but is
sufficient because of the later approximation step.)

4.4. Approximated set
The approximated set F_ (X ;) is determined to

avoid that the number of constraints describing the set
of states increases with each loop. This is made
necessary since the intersection operation (and pos-
sibly the Fourier-Motzkin elimination, cf. Footnote 3)
results in many redundant inequalities. These in-
crease the complexity of the state set description in
each recursion loop, although not modifying its geo-
metric shape. A removal of these redundant con-
straints is possible, as described in [29], however this
step is very time consuming and is not necessary since
we now search an inclusion of the corrected set in a
polyhedron of fixed size (with p faces).
W
Let W= 7
Wy,

be some chosen faces. An over-

approximation of &', . is obtained as
F(X;r)={xeR" |Wx<z}
with, for all ie{l,..., u}

z; = max (w! x).
xeXf’m

The approximated set can only be computed if X',

is a bounded polyhedron (i.e., a polytope). Hence, the



314 Philippe Planchon and Jan Lunze

computation of the approximated set is skipped in the
first loops of the algorithm until the state sets are
bounded. As shown in [27], this is generally achieved
after v loops, where v<n is the observability

index of model M,. It is emphasized that this

permits to use the algorithm without any (bounded)
initial state-set to begin the recursion. This is an
important prerequisite for completeness (although, in
practice, an initial set could be chosen extremely
large). Instead, this approach uses the first
measurements of the output sequence to construct a
bounded state-set over a finite number of recursions.
A trivial choice for the over-approximation faces is

|

1
w :[ ! }, with I, the » -dimensional identity
matrix. In this case, the resulting polytope is enclosed
between axis-parallel faces, i.e., it is a hypercube or
interval set. As shown in [27], a further choice could

be to define W using the observability matrix

C;
C. A}
| Crdio
Se=| 7

-n+1
CrAg

S
letting W =[ ! } and pursuing the over-approxi-

f
mation only every #-steps.

4.5. Computational burden

An overview of the computational burden implied
by the proposed algorithm is presented in Table 1.
Noticeably the linear programs over the set I/ may
be solved explicitly, since the set is an hypercube,
which further improves the proposed implementation.

One advantage of using a polyhedral implementa-
tion 1s the possibility nof to compute an over-
approximated set in each recursion. This greatly

Table 1. Computational burden for guaranteed ob-
servation. (The notation ¢-LP(X) indi-

cates q linear programs have to be solved
over the constraints describing X.)

Set Faces
X 1 (k) s
X, (k+1) s
X m(k+1) 2y

Xf,m(k +1) s+2r
Xo(k+1) | u=

Optimisations

None, the set is given
s-LP(U)+2Np-LP(X y)
2r-LP(U)

None, trivial intersection
p-LP(X ;)

increases the accuracy of the observation, while
remaining within a possibly acceptable computational
cost. In such a case, the computational burden is not
constant in each recursion, but increases until the next
fixed-size over-approximation is determined. Since
the observation is more precise, so may be the
underlying diagnosis described in the next section.
Pursuing such a moving horizon strategy is dependent
both on the available resources as well as on the
currently investigated system.

5. DIAGNOSIS BASED ON GUARANTEED
OBSERVATION

5.1. Consistency and diagnosis

Using the following theorem, the result of the
guaranteed observation is used to verify the
consistency of models with set-valued input and
output measurements.

Theorem 2 (Consistency and observation): A
model that is consistent with a sequence of input and
output sets yields a non-empty guaranteed state-
observation result:

M EUO...k), Y(0...k)) = X (k) #D.

Proof 2: According to Definition 2, the model is
consistent if 3x(0) such that (8) holds. Hence, the

relation A *f(0|0...7c_)7£® holds. From Theorem 1,

the relation &X', (k)= follows, which proves the

theorem.

Clearly, based on a non-empty set-observation
result, it cannot be assured that a model is consistent
with the measurements (this would be the opposite of
the theorem!). However, an empty state-set does prove
the inconsistency of the model. Consequently, the
result of the guaranteed observation can be interpreted
for diagnosis using the emptiness criteria as follows.

Definition 5 (Induced set of faults): Let X, be

the sets resulting from a guaranteed observation using
different models M, feF. The set of faults

induced by the F(k)=4{f eF]
X (k) = O}

Theorem 3 (Complete Diagnosis): The set of faults
induced by a guaranteed observer is complete:

F(k)oF*(0...k).
Proof 3: From the description of the diagnostic
problem in (9) it is known that for all f eF *0...k)

the relation MfIZ(Z/[(O...?),y(O...l;)) holds.

observer 1s

Theorem 2 implies &', (k)= and hence, based on
Definition 5, f eF(k).
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5.2. Diagnostic algorithm

By using the notion of consistency and the
guaranteed state-set observation to test the consistency,
the following diagnostic algorithm is obtained.

Algorithm 2 (Diagnostic algorithm):

GIVEN:

* themodels M., feF as(4)-(6)

» the sequence of input and output sets /(0...k)

and Y(0...k)
INITIALISATION: (£ :=0)

X £ (0)= Fy,,(V(0), U(0)), Vf €F
F(0)={f e FlX »(0) = T}
LooP: (until k=% )

X p(k=1),F(k-1) > X ;(k),F (k)

1. Compute the state sets X sk), for all fe
F(k—1), using Algorithm 1 recursively with
X r(k—1) and the measurement sets U(k—1),
U(k) and Y(k).

2. Determine the induced set of faults
Fk)y={feF (k-1 \Xf(k) # Y.

RESULT: The sequence of induced fault sets F(k),

0<k<k.

The diagnostic algorithm yields the following
diagnostic results:

Proposition 2: The result of Algorithm 2 is
interpreted as follows:
o A fault is detected at time k, if and only if the

model of the faultless behaviour is inconsistent with

the measurements, hence if and only if Ik <k
such that f, ¢F (k).

» Afault f; is unambiguously identified at time k,
if and only if 3k <k such that F(k)= {f;}. In

this case the true fault is exactly known: [~ = f;.

The success of the diagnosis is of course relative to
the given information. First, just as for any diagnosis,
the considered measurement signals must capture a
behaviour of the system which allows a distinction.
An actuator failure can never be detected, if the given
measurements do not include an excitation of this
actuator. Second, since uncertainties are considered,
the fault behaviour must be “sufficiently different”
from the faultless behaviour such that the fault may be
identified, despite the uncertainties. Therefore, while

the bounds e, (k) and e, (k)- which account for the

size of the sets I/ and ) - must be sufficiently

large for Assumption 4 to hold true, setting these
bounds too conservatively may prevent to detect

inconsistencies, and hence the faults. The same holds
true for the modeling uncertainties.

The length of the given input and output sequences
also plays a role in the diagnosis. For example, if a
fault distinguishes itself only in its dynamical
behaviour, then the sequences should be long enough
(with respect to the time constants) to capture the
characteristic differences in the behaviours. Long
sequences tend to lead to good diagnostic results since
the underlying state-sets tend to converge' over time

for stable models (i.e., |det(4,)|<l ). Shorter

sequences, however, are more prone to respect
Assumption 3.

5.3. Implementation of the diagnostic algorithm

Based on the guaranteed observation algorithm
from Section 4, the implementation of the proposed
diagnosis only needs one additional operation: an
emptiness criterion (cf. the consistency check in Step
2 of Algorithm 2). A polyhedron (17) is empty if and
only if

min o
Mx<q+1a

Qnin -—

has a strictly positive solution (a.;, >0), cf. [30].

This test is a linear program in the variable (ox .

In each step of the diagnostic algorithm, it is
verified which models lead to a non-empty state-set
observation result. The faults corresponding to these
models cannot be asserted not to have occurred and,
hence, are kept in the set of faults, which represent the
(complete) diagnostic result.

6. NUMERICAL EXAMPLE

The guaranteed diagnoser is demonstrated by the
following example in which a motor brings a rod to a
desired angular position using a proportional
controller (Fig. 5). The process is described by the
second order differential equation

JO =—k,0-k,0+k(b,,r —0), (20)

with 6, 6 and 6 the angular position and its

derivatives, 6, the angular set-point. The process

parameters J, k,, k,

distinct fault behaviours in Table 2.
The state-space models M, feF={fy, /1,

f3} needed to apply Algorithm 2 are obtained by

discretising the continuous-time model (20) for the
different parameters and the sampling time

and k are given for four

* The convergence is not necessarily true in case of non-
zero input or parameter uncertainties.
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) k(Ore s —0)

Fig. 5. Example of rotating rod.

Table 2. Process true parameters (S.1. units).

Parameter Description
k=10 Controller gain
k,=0.02 | Friction in the position
k,=0.90 Friction in the velocity ( f,,i #3)
k,=1.60 Friction in the velocity ( f,)
J=0.7 Inertia ( f,, ;)
J=1.3 Inertia ( f,)
J=2.0 Inertia ( )

T, =0.02s. The state vector x = (6@ Q)T, the input
u=0,, and the output y =46 are used. The model

of the faultless behaviour M 7o 1s given here:

. | 0997 0.020 P (0}
o7 -0.282 0.972) ’
0.003
Bf — ’
0 10.281
Cp=|1 0],
DfO 20.

For simplicity the behaviours of faults f;, f, and
/3 are assumed exactly known ( P={0} ). The

behaviour for fault f; is known except for an

uncertainty in the process inertia J €[0.9,1.3]kg m?.

Note that this interval includes the true value J =1.3.

An experiment is considered for which the given
input and output data are plotted in Fig. 6. Applying
Algorithm 2 yield both an observation result for each

model and a diagnosis. The sequences of sets X £

f elF, resulting from the guaranteed observation are

drawn in Fig. 7. By projecting the sets on each

dimension of the state-space R?, the polyhedra are

represented in a simplified manner as intervals.

The diagnostic result is shown in Fig. 8. The
interruption of the bars in the diagram emphasises at
what time a given model becomes inconsistent with
the input and output measurements. For example, the

model of the faultless behaviour f;, becomes
inconsistent with the measurements at time ¢ =1.66s

and, hence, a fault is detected ( f; ¢ F ). As the model

of two other fault situations are likewise proven to be
inconsistent with the measurements, the fault f; 1is

unambiguously identified.

The computation effort needed for this solution is
manageable. Using MATLAB on a Pentium IV
1500MHz with 512Mb of memory, this example
requires roughly 80ms to compute each time step for
each considered model.

1.5¢

0.5¢

> 3 4 5 6 7 8 9 10
time

(a) Input sequence.

> 3 4 5 6 7 8 9 10
time

(b) Output sequence.

Fig. 6. Input and output sets for an experiment under
fault behaviour f° = f, (solid lines: edges

of the interval sets, dashed lines: true
measurements).
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Fig. 7. State-set observations for all fault models M £ ,i >0 . All faults, except f,, become inconsistent with the

measurements.

While the graphical representation of the
observation results in Fig. 7 causes the proposed
approach to look similar to an interval-based method,
this is not exact. Indeed, in each recursion of the

observer, the predicted set X', , is a polyhedron and,

in general, not a hypercube. If this intermediary set
would have been represented by means of an interval
set, it would have lead to further over-approximations
(cf. Figs. 3(a) or 4). Using the proposed approach, the
only over-approximations which occur are in the

i3
f2
f1

fO
0 1

: | | l | | 1 | | _l
2 3 4 5 6 7 8 9 10
time

Fig. 8. Consistency of fault models over time.

consideration of model uncertainties (predicted set)
and in the final simplification (approximated set).
While the former cannot be avoided using this method
- or any other method based on convex sets - the latter
effect may be diminished by not over-approximating
in every recursion of the algorithm. Nevertheless, an
actual comparison of this method with an interval-
based approach remains open.

7. CONCLUSIONS

A method for fault diagnosis based on a guaranteed
state observer is presented. The observation allows to
verify the consistency of uncertain state-space models
with sequences of set-valued input and output
measurements. The set-valued approach offers
robustness of the diagnostic result with respect to
explicitly described measurement and modeling errors.

To the author’s knowledge, the approach to
consider structured model uncertainties and the
diagnosis derived therefrom are new. The solution is
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based on the decomposition of the uncertainties in the
system and input matrices such that an over-
approximation using a polyhedral state observer is
found. This approach allows to derive a set of faults
which represents a complete diagnosis.

While a resemblance seems to exist with methods
based on interval analysis, a more precise result can
be expected using a polyhedral set-valued method
since the wunderlying computations are less
conservative.
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